Characteristics of Agricultural Droughts and Spatial Stratified Heterogeneity and Dependence of Dominant Factors in Inner Mongolia Autonomous Region, China

Abstract
Droughts have significantly damaged the environment of the Inner Mongolia Autonomous Region, China. In this study, the region was divided into two subregions. Soil moisture was used as the basic parameter to analyze the characteristics of agricultural droughts. Based on a geographical detector, the spatial stratified heterogeneity in different seasons was discussed. Moreover, the copula joint functions of characteristics and dominant factors of agricultural droughts were constructed. Based on the Soil Moisture Anomaly Percentage Index (SMAPI), the results demonstrate that the climate tendency rate of droughts in the summer and in spring in Subregion I shows an increasing trend, while it decreases in the autumn and winter. In Subregion II, the climate tendency rate of droughts in different seasons has no significant change. Through geographical detection, the single factor detection illustrates that temperature and Precipitation Conversion Efficiency (PCE) show the highest explanatory power in different subregions. The interactive detection also demonstrates the explanatory powers of the combination of the PCE and temperature, respectively. The t-copula function describes the correlation coefficients of the SMAPI with the PCE and temperature, with the optimal tail dependence. In short, agricultural droughts are most significantly affected by temperature and the PCE, and their balance has a significant impact on agricultural droughts.
Funding Information
  • National Natural Science Foundation of China (51779156)

This publication has 21 references indexed in Scilit: