An IoT Assisted Real-Time High CMRR Wireless Ambulatory ECG Monitoring System with Arrhythmia Detection

Abstract
The absence of cardiovascular disease (CVD) diagnostic and management solutions cause significant morbidity among populations in rural areas and the coronavirus disease of 2019 (COVID-19) emergency. To tackle this problem, in this paper, the development of an Internet of things (IoT) assisted ambulatory electrocardiogram (ECG) monitoring system is presented. The system’s wearable single-channel data acquisition device supports 25 h of continuous operation. A right leg drive (RLD) circuit supported analog frontend (AFE) with a high common mode rejection ratio (CMRR) of 121 dB and a digitally implemented notch filter is used to suppress power-line frequency interference. The wearable device continuously sends the collected ECG data via Bluetooth to the user’s smartphone. An application on the user’s smartphone renders real-time ECG trace and heart rate and detects abnormal heart rhythms. This data are then shared in real-time with the user’s doctor via a real-time cloud database. An application on the doctor’s smartphone allows real-time visualization of this data and detection of arrhythmias. Simulations and experimental results demonstrate that reliable ECG signals can be captured with low latency and the heart rate computation is comparable to a commercial application. Low cost, scalability, low latency, real-time ECG monitoring, and improved performance of the system make the system highly suitable for the real-time remote identification and management of CVDs in users of rural areas and in the COVID-19 pandemic.