Electric Heating Behavior of Reduced Oxide Graphene/Carbon Nanotube/Natural Rubber Composites with Macro-Porous Structure and Segregated Filler Network

Abstract
Conductive polymer composites with carbonaceous fillers are very attractive and play a significant role in the field of electric heaters owing to their lightweight, corrosion resistance, and easy processing as well as low manufacturing cost. In this study, lightweight reduced oxide graphene/carbon nanotube/natural rubber (rGO/CNT/NR) composites were fabricated by a facile and cost-effective approach, which consists of rGO assembling on rubber latex particles and hydrogels formation due to the interaction network established between carbonaceous fillers and subsequent mild-drying of the resulting hydrogels. Thanks to the amphiphilic nature of GO sheets, which can serve as a surfactant, the hydrophobic CNTs were easily dispersed into water under ultrasound. On the basis of both the high stable rGO and CNTs suspension and the assembling of rGO on rubber latex, a three-dimensional segregated network of CNT and rGO were easily constructed in macro-porous composites. Either the segregated network and macro-porous structure endowed the resulting composites with low density (0.45 g cm−3), high electrical conductivity (0.60 S m−1), and excellent electric heating behavior, when the weight content of rGO and CNTs are 0.5% and 2.5%, respectively. For electric heating behavior, the steady-state temperature of the above composites reaches 69.1 °C at an input voltage of 15 V.
Funding Information
  • Natural Science Foundation of Shandong Province (ZR2019QEM009, ZR2019MB053)
  • Guangxi Natural Science Foundation (2018GXNSFAA281218, 2019GXNSFAA245017)