New Search

Export article
Open Access

Electric Heating Behavior of Reduced Oxide Graphene/Carbon Nanotube/Natural Rubber Composites with Macro-Porous Structure and Segregated Filler Network

Yanhu Zhan , Yuchao Li , Yanyan Meng , Qian Xie , Marino Lavorgna
Published: 19 October 2020
 by  MDPI
Polymers , Volume 12; doi:10.3390/polym12102411

Abstract: Conductive polymer composites with carbonaceous fillers are very attractive and play a significant role in the field of electric heaters owing to their lightweight, corrosion resistance, and easy processing as well as low manufacturing cost. In this study, lightweight reduced oxide graphene/carbon nanotube/natural rubber (rGO/CNT/NR) composites were fabricated by a facile and cost-effective approach, which consists of rGO assembling on rubber latex particles and hydrogels formation due to the interaction network established between carbonaceous fillers and subsequent mild-drying of the resulting hydrogels. Thanks to the amphiphilic nature of GO sheets, which can serve as a surfactant, the hydrophobic CNTs were easily dispersed into water under ultrasound. On the basis of both the high stable rGO and CNTs suspension and the assembling of rGO on rubber latex, a three-dimensional segregated network of CNT and rGO were easily constructed in macro-porous composites. Either the segregated network and macro-porous structure endowed the resulting composites with low density (0.45 g cm−3), high electrical conductivity (0.60 S m−1), and excellent electric heating behavior, when the weight content of rGO and CNTs are 0.5% and 2.5%, respectively. For electric heating behavior, the steady-state temperature of the above composites reaches 69.1 °C at an input voltage of 15 V.
Keywords: reduced graphene oxide / carbon nanotube / Electric Heater / Macro-porous Structure / Segregated Network

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Polymers" .
References (48)
    Back to Top Top