New Search

Export article
Open Access

Convergence on Population Dynamics and High-Dimensional Haddock Conjecture

Published: 26 November 2021
 by  MDPI

Abstract: One fundamental step towards grasping the global dynamic structure of a population system involves characterizing the convergence behavior (specifically, how to characterize the convergence behavior). This paper focuses on the neutral functional differential equations arising from population dynamics. With the help of monotonicity techniques and functional methods, we analyze the subtle relations of both the ω-limited set and special point. Meanwhile, we prove that every bounded solution converges to a constant vector, as t tends to positive infinity. Our results correlate with the findings from earlier publications, and our proof yields an improved Haddock conjecture.
Keywords: convergence / population dynamics / neutral functional differential equation / Haddock conjecture

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Symmetry" .
References (28)
    Back to Top Top