Scenario Based Transmission Power Control (TPC) Analysis over Wireless Body Area Network (WBAN)

Abstract
In the modern age, Wireless Body Area Network (WBAN) becomes very popular everywhere for monitoring healthcare services remotely. However, the WBAN system has lagged in efficient power consumption till now. As WBAN is formed with several portable devices, low power consumption will ensure battery lifetime. In this paper, an analysis of Transmission Power Control (TPC) over WBAN has been conducted. A ZigBee based WBAN model with different network topologies and data rates has been proposed in the experiment. WBAN data-management technique has been proposed due to reducing more data transmission. Less data transmission reduces overall power consumption. The whole work has been done using OPNET and OMNET++ network simulators. Six sensor nodes have been used with a ZigBee coordinator in the simulation scenario where throughput, load, delay, data traffic, amount of power consumption, packet delivery ratio, etc. have been used as simulation parameters. TPC analysis indicates the power consumptions in different topologies, with different data rates. Several simulation scenarios were run and the results were analyzed in this paper.