New Search

Export article
Open Access

Tunable Dual Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide

Published: 17 October 2020
 by  MDPI AG
Applied Sciences , Volume 10; doi:10.3390/app10207259

Abstract: With the rapid development of terahertz technology, tunable high-efficiency broadband functional devices have become a research trend. In this research, a dynamically tunable dual broadband terahertz absorber based on the metamaterial structure of vanadium dioxide (VO2) is proposed and analyzed. The metamaterial is composed of patterned VO2 on the top layer, gold on the bottom layer and silicon dioxide (SiO2) as the middle dielectric layer. Simulation results show that two bandwidths of 90% absorption reach as wide as 2.32 THz from 1.87 to 4.19 THz and 2.03 THz from 8.70 to 10.73 THz under normal incidence. By changing the conductivity of VO2, the absorptance dynamically tuned from 2% to 94%. Moreover, it is verified that absorptance is insensitive to the polarization angle. The physical origin of this absorber is revealed through interference theory and matching impedance theory. We further investigate the physical mechanism of dual broadband absorption through electric field analysis. This design has potential applications in imaging, modulation and stealth technology.
Keywords: metamaterial / terahertz / vanadium dioxide / Perfect Absorber

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Applied Sciences" .
References (31)
    Cited by 1 articles
      Back to Top Top