A Paleo-Lake and wetland paleoecology associated with human use of the distal Old River Bed Delta at the Pleistocene-Holocene transition in the Bonneville Basin, Utah, USA

Abstract
Mollusk and ostracode assemblages from the distal Old River Bed delta (ORBD) contribute to our understanding of the Lake Bonneville basin Pleistocene-Holocene transition (PHT) wetland and human presence on the ORBD (ca. 13,000–7500 cal yr BP). Located on U.S. Air Force-managed lands of the Great Salt Lake Desert (GSLD) in western Utah, USA, the area provided 30 samples from 12 localities. The biological assemblages and the potential water sources using 87Sr/86Sr analyses showed wetland expansion and contraction across the PHT, including the Younger-Dryas Chronozone (YDC). The record reflects cold, freshwater conditions, which is uncharacteristic of the Great Salt Lake Desert, after recession of Lake Bonneville. Lymnaea stagnalis jugularis, Cytherissa lacustris, and possibly Candona sp. cf. C. adunca, an endemic and extinct species only reported from Lake Bonneville, suggest cold-water environments. Between 13,000–12,400 cal yr BP, a shallow lake formed, referred to as the Old River Bed delta lake, fed by Lake Gunnison, as shown by 87Sr/86Sr ratios of 0.71024–0.71063 in mollusk fossils collected at the ORBD, characteristic of the Sevier basin. These findings add paleoenvironmental context to the long-term use of the ORBD by humans in constantly changing wetland habitats between 13,000–9500 cal yr BP.