Water-Based PEDOT:Nafion Dispersion for Organic Bioelectronics

Abstract
The water dispersion of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PE-DOT:PSS) is one of the most used material precursors in organic electronics also thanks to its industrial production. There is a growing interest for conductive polymers that could be alternative surrogates or replace PEDOT:PSS in some applications. A recent study by our group compared electrodeposited PEDOT:Nafion vs PEDOT:PSS in the use for neural recordings. Here, we introduce an easy and reproducible synthetic protocol to prepare a water dispersion of PEDOT:Nafion. The conductivity of the pristine material is on the order of 2 S cm(-1) and was improved up to approximate to 6 S cm(-1) upon treatment with ethylene glycol. Faster ion transfer was assessed by electrochemical impedance spectroscopy (EIS), and, interestingly, an improved adhesion was observed for coatings of the new PEDOT:Nafion dispersion on glass substrates, even without the addition of the silane cross-linker needed for PEDOT:PSS. As proof of concept, we demonstrate the use of this novel water dispersion of PEDOT:Nafion in three different organic electronic device architectures, namely, an organic electrochemical transistor (OECT), a memristor, and an artificial synapse.