Bacteriophage SRD2021 Recognizing Capsular Polysaccharide Shows Therapeutic Potential in Serotype K47 Klebsiella pneumoniae Infections

Abstract
Klebsiella pneumoniae is an opportunistic pathogen posing an urgent threat to global public health, and the capsule is necessary for K. pneumoniae infection and virulence. Phage-derived capsule depolymerases have shown great potential as antivirulence agents in treating carbapenem-resistant K. pneumoniae (CRKP) infections. However, the therapeutic potential of phages encoding depolymerases against CRKP remains poorly understood. In this study, we identified a long-tailed phage SRD2021 specific for mucoid CRKP with capsular K47 serotype, which is the predominant infectious K-type in Asia. Genome sequencing revealed that ΦSRD2021 belonged to the Drulisvirus genus and exhibited a capsular depolymerase domain in its tail fiber protein. A transposon-insertion library of host bacteria was constructed to identify the receptor for ΦSRD2021. We found that most phage-resistant mutants converted to a nonmucoid phenotype, including the mutant in wza gene essential for capsular polysaccharides export. Further knockout and complementation experiments confirmed that the Δwza mutant avoided adsorption by ΦSRD2021, indicating that the K47 capsular polysaccharide is the necessary receptor for phage infection. ΦSRD2021 lysed the bacteria mature biofilms and showed a therapeutic effect on the prevention and treatment of CRKP infection in the Galleria mellonella model. Furthermore, ΦSRD2021 also reduced the colonized CRKP in mouse intestines significantly. By recognizing the host capsule as a receptor, our results showed that ΦSRD2021 may be used as a potential antibacterial agent for K47 serotype K. pneumoniae infections.
Funding Information
  • National Natural Science Foundation of China (32070131, HW)
  • National Major Science and Technology Projects of China (2017ZX10303405-002, HZ)
  • Natural Science Foundation of Jiangsu Province (BK20191314, HW)