Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium–Sulfur Batteries

Abstract
Solid-state Li–S batteries are attractive due to their high energy density and safety. However, it is unclear whether the concepts from liquid electrolytes are applicable in the solid state to improve battery performance. Here, we demonstrate that the nanoscale encapsulation concept based on Li2[email protected]2 core–shell particles, originally developed in liquid electrolytes, is effective in solid polymer electrolytes. Using in situ optical cell and sulfur K-edge X-ray absorption, we find that polysulfides form and are well-trapped inside individual particles by the nanoscale TiS2 encapsulation. This TiS2 encapsulation layer also functions to catalyze the oxidation reaction of Li2S to sulfur, even in solid-state electrolytes, proven by both experiments and density functional theory calculations. A high cell-level specific energy of 427 W·h·kg–1 is achieved by integrating the Li2[email protected]2 cathode with a poly(ethylene oxide)-based electrolyte and a lithium metal anode. This study points to the fruitful direction of borrowing concepts from liquid electrolytes into solid-state batteries.
Funding Information
  • National Academy of Sciences
  • Division of Graduate Education (DGE-1656518)
  • Vehicle Technologies Program