Abstract
A well-known problem in classical mechanics that is often presented for pedagogical purposes involves a small mass that slides without friction under a gravitational force on the surface of a sphere. Commonly, students are asked to find the angular position where a mass with no azimuthal motion leaves the spherical surface, and this question is easily within the reach of most intermediate physics students. However, a complete solution for more general motion of the mass on the spherical surface (including friction) may be suitable for many advanced undergraduates. Without friction, the problem including azimuthal motion is really an inverted version of an ideal spherical pendulum. This problem is also useful for extending discussion in classical mechanics to more sophisticated topics beyond solving Newton's laws of motion, such as the importance of conservation laws and constants of motion as they relate to symmetry, conservative versus dissipative forces, and the role of constraints.

This publication has 3 references indexed in Scilit: