Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network

Abstract
Unauthorized operations referred to as "black flights" of unmanned aerial vehicles (UAVs) pose a significant danger to public safety, and existing low-attitude object detection algorithms encounter difficulties in balancing detection precision and speed. Additionally, their accuracy is insufficient, particularly for small objects in complex environments. To solve these problems, we propose a lightweight feature-enhanced convolutional neural network able to perform detection with high precision detection for low-attitude flying objects in real time to provide guidance information to suppress black-flying UAVs. The proposed network consists of three modules. A lightweight and stable feature extraction module is used to reduce the computational load and stably extract more low-level feature, an enhanced feature processing module significantly improves the feature extraction ability of the model, and an accurate detection module integrates low-level and advanced features to improve the multiscale detection accuracy in complex environments, particularly for small objects. The proposed method achieves a detection speed of 147 frames per second (FPS) and a mean average precision (mAP) of 90.97% for a dataset composed of flying objects, indicating its potential for low-altitude object detection. Furthermore, evaluation results based on microsoft common objects in context (MS COCO) indicate that the proposed method is also applicable to object detection in general.

This publication has 21 references indexed in Scilit: