New Search

Advanced search
Export article
Open Access

Novel Ternary Heterogeneous Reduction Graphene Oxide (RGO)/BiOCl/TiO2 Nanocomposites for Enhanced Adsorption and Visible-Light Induced Photocatalytic Activity toward Organic Contaminants

Sciprofile linkZhanxin Jing, Sciprofile linkXiangyi Dai, Sciprofile linkXueying Xian, Sciprofile linkQiongshan Zhang, Sciprofile linkHuojiao Zhong, Sciprofile linkYong Li
Published: 2 June 2020
 by  MDPI
Materials , Volume 13; doi:10.3390/ma13112529

Abstract: Herein, we describe a simple and cost-effective design for the fabrication of a novel ternary RGO/BiOCl/TiO2 nanocomposites through a simple hydrothermal process. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (UV–vis DRS) and N2 adsorption–desorption analysis. Organic contaminants—such as methylene blue (MB), methyl orange (MO), rhodamine B (RhB) and amido black-10B (AB-10B)—were employed as the target pollutants to evaluate the adsorption capacity and photocatalytic activity of RGO/BiOCl/TiO2 nanocomposites. From experimental data, it was also found that the amount of TiO2 impressed the photocatalytic performance, and the nanocomposites with 10% of TiO2 showed the best photocatalytic activity. The improved photocatalytic performance may be mainly due to the narrow band gap, and the charge separation and migration of RGO. Moreover, good recyclability was obtained from RGO/BiOCl/TiO2 nanocomposites, and scavenger tests indicated that photogenerated holes were the main active species in the reaction system. Therefore, the prepared RGO/BiOCl/TiO2 nanocomposites have broad applications foreground in pollutants purification.
Keywords: nanocomposites / visible light / photocatalyst / RGO/BiOCl/TiO2

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Materials" .
References (54)
    Back to Top Top