Mutual inhibition between Prkd2 and Bcl6 controls T follicular helper cell differentiation

Abstract
T follicular helper cells (TFH) participate in germinal center (GC) development and are necessary for B cell production of high-affinity, isotype-switched antibodies. In a forward genetic screen, we identified a missense mutation in Prkd2, encoding the serine/threonine kinase protein kinase D2, which caused elevated titers of immunoglobulin E (IgE) in the serum. Subsequent analysis of serum antibodies in mice with a targeted null mutation of Prkd2 demonstrated polyclonal hypergammaglobulinemia of IgE, IgG1, and IgA isotypes, which was exacerbated by the T cell–dependent humoral response to immunization. GC formation and GC B cells were increased in Prkd2−/− spleens. These effects were the result of excessive cell-autonomous TFH development caused by unrestricted Bcl6 nuclear translocation in Prkd2−/− CD4+ T cells. Prkd2 directly binds to Bcl6, and Prkd2-dependent phosphorylation of Bcl6 is necessary to constrain Bcl6 to the cytoplasm, thereby limiting TFH development. In response to immunization, Bcl6 repressed Prkd2 expression in CD4+ T cells, thereby committing them to TFH development. Thus, Prkd2 and Bcl6 form a mutually inhibitory positive feedback loop that controls the stable transition from naïve CD4+ T cells to TFH during the adaptive immune response.
Funding Information
  • National Institutes of Health (AI125581)
  • National Institutes of Health (AI100627)
  • National Institutes of Health (K08DK107886)
  • National Institutes of Health (5U01AI095542)
  • Uehara Memorial Foundation
  • Japan Society for the Promotion of Science
  • The Japanese Biochemical Society