Anisotropic Mechanical Properties of Columnar and Equiaxed A6005C Aluminum Alloys Fabricated by Capillary Shaping

Abstract
Capillary shaping is an attractive directional solidification process of fabricating lightweight aluminum frame components for automobiles. In this study, the strengths of capillary shaped A6005C aluminum alloys were investigated under various conditions. Tensile tests were performed parallel to and perpendicular to the pulling direction, to investigate columnar and equiaxed grain structures, as-cast and T6 heat-treated conditions, and different crystal orientations. In columnar grain specimens, the strength parallel to the pulling direction was higher than that perpendicular to the pulling direction in both as-cast and T6-treated conditions. Crystal orientation affected the work hardening behavior of as-cast specimens loaded perpendicular to the pulling direction. In equiaxed grain specimens, the anisotropy and the distribution of mechanical properties were quite low in both as-cast and T6-treated conditions.