The genetic structure of Aedes aegypti populations is driven by boat traffic in the Peruvian Amazon

Abstract
In the Americas, as in much of the rest of the world, the dengue virus vector Aedes aegypti is found in close association with human habitations, often leading to high population densities of mosquitoes in urban settings. In the Peruvian Amazon, this vector has been expanding to rural communities over the last 10–15 years, but to date, the population genetic structure of Ae. aegypti in this region has not been characterized. To investigate the relationship between Ae. aegypti gene flow and human transportation networks, we characterized mosquito population structure using a panel of 8 microsatellite markers and linked results to various potential mechanisms for long-distance dispersal. Adult and immature Ae. aegypti (>20 individuals per site) were collected from Iquitos city and from six neighboring riverine communities, i.e., Nauta, Indiana, Mazan, Barrio Florida, Tamshiaco, and Aucayo. FST statistics indicate significant, but low to moderate differentiation for the majority of study site pairs. Population structure of Ae. aegypti is not correlated with the geographic distance between towns, suggesting that human transportation networks provide a reasonable explanation for the high levels of population mixing. Our results indicate that Ae. aegypti gene flow among sub-populations is greatest between locations with heavy boat traffic, such as Iquitos-Tamshiaco and Iquitos-Indiana-Mazan, and lowest between locations with little or no boat/road traffic between them such as Barrio Florida-Iquitos. Bayesian clustering analysis showed ancestral admixture among three genetic clusters; no single cluster was exclusive to any site. Our results are consistent with the hypothesis that human transportation networks, particularly riverways, are responsible for the geographic spread of Ae. aegypti in the Peruvian Amazon. Our findings are applicable to other regions of the world characterized by networks of urban islands connected by fluvial transport routes. Aedes aegypti, the primary mosquito vector of dengue, is a highly invasive species that is expanding from urban to peri-urban and rural areas throughout the Americas. Previous studies documented the role of human transportation networks in Ae. aegypti long-distance dispersal. We examined whether patterns of Ae. aegypti gene flow are consistent with this observation. Mosquitoes were collected from seven locations, including the large Amazonian city of Iquitos, Peru, and six neighboring rural communities, and their genetic relatedness was compared using 8 microsatellite markers. Our results showed ample gene flow among mosquito populations in this region, with greater gene flow observed among sites that are connected by fluvial routes. These findings are consistent with the hypothesis that human transportation networks, especially via boats, are a primary contributing factor to the spread of Ae. aegypti in the Peruvian Amazon.