Drought Sensitivity and Trends of Riparian Vegetation Vigor in Nevada, USA (1985–2018)

Abstract
Dryland riparian areas are under increasing stress due to expanding human water demands and a warming climate. Quantifying responses of dryland riparian vegetation to these pressures is complicated by high climatic variability, which can create strong, transient changes in vegetation vigor that could mask other disturbance events. In this study, we utilize a 34-year archive of Landsat satellite data to (1) quantify the strength and timescales of vegetation responses to interannual variability in drought status and (2) isolate and remove this influence to assess resultant trends in vegetation vigor for riparian areas across the state of Nevada, the driest state in the USA. Correlations between annual late-summer Normalized Difference Vegetation Index (NDVI) and the Standardized Precipitation–Evapotranspiration Index (SPEI) were calculated across a range of time periods (varying timing and durations) for all riparian pixels within each of the 45 ecoregions, and the variability of these values across the study area is shown. We then applied a novel drought adjustment method that used the strongest SPEI–NDVI timescale relationships for each ecoregion to remove the influence of interannual drought status. Our key result is a 30 m resolution map of drought-adjusted riparian NDVI trends (1985–2018). We highlight and describe locations where impacts of invasive species biocontrol, mine water management, agriculture, changing water levels, and fire are readily visualized with our results. We found more negatively trending riparian areas in association with wide valley bottoms, low-intensity agricultural land uses, and private land ownerships and more positive trends in association with narrow drainages, public lands, and surrounding perennial water bodies (an indication of declining water levels allowing increased vegetative cover). The drought-adjusted NDVI improved the statistical significance of trend estimates, thereby improving the ability to detect such changes. Results from this study provide insight into the strength and timescales of riparian vegetation responses to drought and can provide important information for managing riparian areas within the study area. The novel approach to drought adjustment is readily transferrable to other regions.