Research on Optimal Control of Excavator Negative Control Swing System

Abstract
In order to improve the energy efficiency and dynamic of negative control swing systems of excavators, this paper proposes a technical scheme of adding two PRVs (pressure reducing valves) to main valve pilot control circuit, which can adjust main value opening arbitrarily according to the working condition. A pump-value compound control strategy was formulated to regulate the system power flow. During swing motor acceleration, main pump and the two PRVs are controlled to match system supply flow with motor demand flow, thereby reducing motor overflow and shortening system response time. During swing motor braking, the channel from motor to tank is opened to release hydraulic brake pressure by controlling PRVs before swing speed reduces to zero, which prevents the motor from reversing and oscillating. A simulation model of 37-ton excavator was established, and the control strategy was simulated. The original and optimized performance of the swing system were compared and analyzed, and results show that the application of new scheme with the compound control strategy can reduce overflow and increase braking stability of the swing system. In addition, system response and speed control performance are also improved when excavator performs a single-swing action.
Funding Information
  • National Key Research and Development Project (2018YFB2001202)