ATmospheric LIDar (ATLID): Pre-Launch Testing and Calibration of the European Space Agency Instrument That Will Measure Aerosols and Thin Clouds in the Atmosphere

Abstract
ATLID (ATmospheric LIDar) is the atmospheric backscatter Light Detection and Ranging (LIDAR) instrument on board of the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission, the sixth Earth Explorer Mission of the European Space Agency (ESA) Living Planet Programme. ATLID’s purpose is to provide vertical profiles of optically thin cloud and aerosol layers, as well as the altitude of cloud boundaries, with a resolution of 100 m for altitudes of 0 to 20 km, and a resolution of 500 m for 20 km to 40 km. In order to achieve this objective ATLID emits short duration laser pulses in the ultraviolet, at a repetition rate of 51 Hz, while pointing in a near nadir direction along track of the satellite trajectory. The atmospheric backscatter signal is then collected by its 620 mm aperture telescope, filtered through the optics of the instrument focal plane assembly, in order to separate and measure the atmospheric Mie and Rayleigh scattering signals. With the completion of the full instrument assembly in 2019, ATLID has been subjected to an ambient performance test campaign, followed by a successful environmental qualification test campaign, including performance calibration and characterization in thermal vacuum conditions. In this paper the design and operational principle of ATLID is recalled and the major performance test results are presented, addressing the main key receiver and emitter characteristics. Finally, the estimated instrument, in-orbit, flight predictions are presented; these indicate compliance of the ALTID instrument performance against its specification and that it will meet its mission science objectives for the EarthCARE mission, to be launched in 2023.