Review of Custom Grids for Updated Vehicles on VANET Simulators

Abstract
VANET deployment and testing is time-consuming and costly. Simulation is a handy and less expensive alternative to real implementation as a workaround. It is required to develop accurate models in order to receive excellent results from a VANET simulation, which difficult operation owes to the complexity of the VANET infrastructure (for example, simulators have to model the navigation models and communication protocols). The network and navigation components, which are the building blocks of contemporary VANET simulators, are described in this section. Simulators are a useful tool for testing VANETs at a minimal cost and without endangering users. However, in order to be helpful and convey trustworthy findings, simulators must be able to simulate new technologies that enter the VANET and enable safety and security procedures. To put it another way, if simulation is a good tool for VANET development it should be enhanced. VANET simulators have been the subject of research since early 2010 [1-4]. They analyze the correctness of VANET's numerous tools like a navigation simulator and network simulator, as well as how these building blocks are connected. The introduction of new network technologies such as 5G, SDN, edge computing, and VANET research as a result of investments in autonomous cars is forcing VANET simulators to re-evaluate their support for these new capabilities. We present an updated evaluation of VANET simulators in this post, highlighting their key features and current support for emerging technologies.