Performance evaluation of a novel conceptual bioprocess for clinically-required mass production of hematopoietic cells

Abstract
Objective The novel engineered bioprocess, which was designed and modeled to provide the clinically relevant cell numbers for different therapies in our previous work (Kaleybar et al. Food Bioprod Process 122:254–268, https://doi.org/10.1016/j.fbp.2020.04.012, 2020), was evaluated by using U937 as hematopoietic model cells. Results The culture system showed a 30-fold expansion of U937 cells in one-step during a 10-day culture period. The cell growth profile, the substrate and oxygen consumptions, and byproduct formations were all in agreement with the model predications during 7 days. The cell proliferation decrease after 7 days was attributed to optional oxygen limiting condition in the last days of culture. The bioreactor culture system revealed also a slight enhancement of lactate dehydrogenase (LDH) production as compared to the 2D conventional culture system, indicating the low impact of shear stress on cellular damage in the dynamic system. Conclusions The results demonstrated that the conceptual bioprocess for suspended stem cell production has a great potential in practice although additional experiments are required to improve the system.
Funding Information
  • Iran National Science Foundation (96000408)

This publication has 15 references indexed in Scilit: