Folding Responses of Origami-Inspired Structures Connected by Groove Compliant Joints

Abstract
Folding responses of a set of notch-type compliant joint candidates are first numerically explored before the victorious one is implemented in actuating the deployment of Miura origami-inspired plate structure. The considered notch-type compliant joints are groove, elliptical holes, rectangular holes, and outside LET types. The exploration and examination of the kinematic and dynamic characteristics of these joints include performance indicators such as stress contour, load-deformation, moment-angle, and stiffness-angle relationships for different geometric parameters, with a specific interest in their hysteretic behaviors. Considering various performance features, the groove joints have been identified as the most suitable to be employed as the Miura origami-inspired hinge. The Miura origami-inspired plate folding behaviors are further explored considering various numbers and placements of groove joints. It has been found that the Miura plate performs better with the groove joint compared to that without one and that the single and double groove joint modes are inter-correlated. The study offers a comprehensive understanding of the effects of geometrical variation of numerous compliant joints on the folding behaviors as well as the further implementation of the victorious one in actuating the deployment of the Miura origami-inspired plate structure in accordance with the number and location of the joint.
Funding Information
  • National Natural Science Foundation of China (51822805, 51878147, U1937202)