Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction

Abstract
Tandem solar cells that pair silicon with a metal halide perovskite are a promising option for surpassing the single-cell efficiency limit. We report a monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15%. The perovskite absorber, with a bandgap of 1.68 electron volts, remained phase-stable under illumination through a combination of fast hole extraction and minimized nonradiative recombination at the hole-selective interface. These features were made possible by a self-assembled, methyl-substituted carbazole monolayer as the hole-selective layer in the perovskite cell. The accelerated hole extraction was linked to a low ideality factor of 1.26 and single-junction fill factors of up to 84%, while enabling a tandem open-circuit voltage of as high as 1.92 volts. In air, without encapsulation, a tandem retained 95% of its initial efficiency after 300 hours of operation.
Funding Information
  • H2020 European Research Council (763977)
  • Deutsche Forschungsgemeinschaft (423749265)
  • Deutsche Forschungsgemeinschaft (03EE1017C - SPP 2196)
  • Bundesministerium für Bildung und Forschung (03SF0540)
  • Javna Agencija za Raziskovalno Dejavnost RS (P2-0197)
  • Javna Agencija za Raziskovalno Dejavnost RS (J2-1727)
  • Lietuvos Mokslo Taryba (S‐MIP‐19‐5/SV3‐1079)
  • Bundesministerium für Wirtschaft und Energie (0324288C)
  • Helmholtz Association
  • EPSRC Centre for Doctoral Training in New and Sustainable Photovoltaics (CDT-PV (EP/L01551X/1))