A Study on Thermal Performance of Palladium as Material for Passive Heat Transfer Enhancement Devices in Thermal and Electronics Systems

Abstract
In this work, the thermal behavior of fin made of palladium material under the influences of internal transfer mechanisms such as thermal radiation and temperature-dependent internal heat generation is investigated. The thermal model for the extended surface made of palladium as the fin material is first developed and solved numerically using finite difference method. The effects of various parameters on the heat transfer model of the extended surface are investigated. The results show that the rate of heat transfer through the fin and the thermal efficiency of the fin increase as the thermal conductivity of the fin material increases. This shows that fin is more efficient and effective for a larger value of thermal conductivity. However, the thermal conductivity of the fin with palladium material is low and constant at the value of approximately 75 W/mK in a wider temperature range of -100oC and 227oC. Also, it is shown that the thermal efficiencies of potential materials (except for stainless steel and brass) for fins decrease as the fin temperatures increase. This is because the thermal conductivities of most of the materials used for fins decreases as temperature increases. However, keeping other fin properties and the external conditions constant, the thermal efficiency of the palladium is constant as the temperature of the fin increases within the temperature range of -100oC and 227oC. The study will assist in the selection of proper material for the fin and in the design of passive heat enhancement devices under different applications and conditions.