Design, Synthesis, Crystal Structure and Photophysical Properties of New Oxadiazole Extended Viologen Fluorophore

Abstract
Viologens (N,N'-dimethyl-4,4-bipyridinium) are advanced functional materials, found important applications in electrochromic devices, molecular machines, organic batteries, and carbohydrate oxidation catalysts in alkaline fuel. In this article, we investigated the design, synthesis and photophysical properties of N,N'-dimethyl-2,5-Bis(pyridinium)oxadiazole 4 and its precursor 2,5- Bis(pyridine)oxadiazole 2. The crystal structure and photophysical properties of viologen 4 and precursor 2 have been determined. The viologen molecule 4 crystallized in monoclinic form, space group P21/n with four molecules in unit cell. Precursor molecule 2 also crystalized in monoclinic form, space group C2/c with four molecules in unit cell. From X-rd data, we found three cations in the molecular structure of viologen molecule 4, which is unusual in viologens. In the three-dimensional molecular packing diagram of molecule 4, the three cations and iodate anions are stabilized by C···C, C···I, N···I, N···H, H···I, N—H···I and C—H···I. The dihedral angle between planes having oxadiazole and two benzene rings are 5° and 8°, suggesting the molecule 4 is a slightly strained one. The molecular structure of precursor molecule 2 stabilized by C···C and N···H short contacts between the molecules. The molecule 4 displayed strong absorbance at 315 nm and emissions between 390 - 410 nm.