New Search

Export article
Open Access

Optogenetic and thermogenetic manipulation of defined neural circuits and behaviors in Drosophila

Published: 24 March 2022

Abstract: Neural network dynamics underlying flexible animal behaviors remain elusive. The fruit fly Drosophila melanogaster is considered an excellent model in behavioral neuroscience because of its simple neuroanatomical architecture and the availability of various genetic methods. Moreover, Drosophila larvae's transparent body allows investigators to use optical methods on freely moving animals, broadening research directions. Activating or inhibiting well-defined events in excitable cells with a fine temporal resolution using optogenetics and thermogenetics led to the association of functions of defined neural populations with specific behavioral outputs such as the induction of associative memory. Furthermore, combining optogenetics and thermogenetics with state-of-the-art approaches, including connectome mapping and machine learning-based behavioral quantification, might provide a complete view of the experience- and time-dependent variations of behavioral responses. These methodologies allow further understanding of the functional connections between neural circuits and behaviors such as chemosensory, motivational, courtship, and feeding behaviors and sleep, learning, and memory.
Keywords: functional / optogenetics and thermogenetics / model / neural circuits / circuits and behaviors

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Learning & Memory" .
References (100)
    Back to Top Top