CXCR3 chemokine receptor contributes to specific CD8+ T cell activation by pDC during infection with intracellular pathogens

Abstract
Chemokine receptor type 3 (CXCR3) plays an important role in CD8+ T cells migration during intracellular infections, such as Trypanosoma cruzi. In addition to chemotaxis, CXCR3 receptor has been described as important to the interaction between antigen-presenting cells and effector cells. We hypothesized that CXCR3 is fundamental to T. cruzi-specific CD8+ T cell activation, migration and effector function. Anti-CXCR3 neutralizing antibody administration to acutely T. cruzi-infected mice decreased the number of specific CD8+ T cells in the spleen, and those cells had impaired in activation and cytokine production but unaltered proliferative response. In addition, anti-CXCR3-treated mice showed decreased frequency of CD8+ T cells in the heart and numbers of plasmacytoid dendritic cells in spleen and lymph node. As CD8+ T cells interacted with plasmacytoid dendritic cells during infection by T. cruzi, we suggest that anti-CXCR3 treatment lowers the quantity of plasmacytoid dendritic cells, which may contribute to impair the prime of CD8+ T cells. Understanding which molecules and mechanisms guide CD8+ T cell activation and migration might be a key to vaccine development against Chagas disease as those cells play an important role in T. cruzi infection control. Inflammatory chemokine receptors such as CXCR3 play an important role in T lymphocytes migration into an infected tissue during Th1 response. Recently, the role of CXCR3 as a co-stimulatory molecule was demonstrated, and T lymphocytes from CXCR3 deficient mice had impaired effector function. CXCR3 receptor was highly expressed on specific CD8+ T cells after challenge with T. cruzi, and the hypothesis of that molecule is important for CD8+ T cells activation, migration and functionality was raised. We used the anti-CXCR3 neutralizing antibody approach and demonstrated that C57BL/6 treated mice died very quickly due to T. cruzi infection, and specific CD8+ T cells had decreased effector phenotyping, cytokine production, and cytotoxicity. In addition, anti-CXCR3 treatment decreased the number of dendritic plasmacytoid cells in the lymphoid tissues. The lower quantity of dendritic plasmacytoid cells in those tissues might contribute to the decrease in CD8+ T cells activation. Overall, CXCR3 molecule seems to be an important molecule to be explored during vaccine against Chagas disease strategies.

This publication has 43 references indexed in Scilit: