New Search

Export article
Open Access

Analyzing Twitter Data to Evaluate People’s Attitudes towards Public Health Policies and Events in the Era of COVID-19


Abstract: Policymakers and relevant public health authorities can analyze people’s attitudes towards public health policies and events using sentiment analysis. Sentiment analysis focuses on classifying and analyzing text sentiments. A Twitter sentiment analysis has the potential to monitor people’s attitudes towards public health policies and events. Here, we explore the feasibility of using Twitter data to build a surveillance system for monitoring people’s attitudes towards public health policies and events since the beginning of the COVID-19 pandemic. In this study, we conducted a sentiment analysis of Twitter data. We analyzed the relationship between the sentiment changes in COVID-19-related tweets and public health policies and events. Furthermore, to improve the performance of the early trained model, we developed a data preprocessing approach by using the pre-trained model and early Twitter data, which were available at the beginning of the pandemic. Our study identified a strong correlation between the sentiment changes in COVID-19-related Twitter data and public health policies and events. Additionally, the experimental results suggested that the data preprocessing approach improved the performance of the early trained model. This study verified the feasibility of developing a fast and low-human-effort surveillance system for monitoring people’s attitudes towards public health policies and events during a pandemic by analyzing Twitter data. Based on the pre-trained model and early Twitter data, we can quickly build a model for the surveillance system.
Keywords: sentiment analysis / COVID-19 / social media

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

References (36)
    Back to Top Top