Abstract
Improving the photovoltaic performance directly by innovative device architectures contributes much progress in the field of organic solar cells. Photovoltaic device using different kinds of heterojunction with the given set of organic semiconductors paves the way to a better understanding of the working mechanism of organic heterojunction. Here, we report on the fabrication of a new device structure without employing extra material. A thin film of the donor material (chloroaluminum phthalocyanine (ClAlPc)) is inserted between ClAlPc:C60 bulk heterojunction (BHJ) and C60 layer by glancing angle deposition. A ClAlPc/C60 planar heterojunction co-exists with ClAlPc:C60 BHJ simultaneously in this device. Higher efficiency is obtained with this novel device structure. The effects of this additional ClAlPc layer on open-circuit voltage and fill factor in photovoltaic cells are studied. This work provides a new route to improve the device performance of organic solar cells.