Leaf open time sinogram (LOTS): a novel approach for patient specific quality assurance of total marrow irradiation

Abstract
There is no ideal detector-phantom combination to perform patient specific quality assurance (PSQA) for Total Marrow (TMI) and Lymphoid (TMLI) Irradiation plan. In this study, 3D dose reconstruction using mega voltage computed tomography detectors measured Leaf Open Time Sinogram (LOTS) was investigated for PSQA of TMI/TMLI patients in helical tomotherapy. The feasibility of this method was first validated for ten non-TMI/TMLI patients, by comparing reconstructed dose with (a) ion-chamber (IC) and helical detector array (ArcCheck) measurement and (b) planned dose distribution using 3D gamma analysis for 3%@3mm and dose to 98% (D-98%) and 2% (D-2%) of PTVs. Same comparison was extended for ten treatment plans from five TMI/TMLI patients. In all non-TMI/TMLI patients, reconstructed absolute dose was within +/- 1.80% of planned and IC measurement. The planned dose distribution agreed with reconstructed and ArcCheck measured dose with mean (SD) 3D gamma of 98.70% (1.57%) and 2D gamma of 99.48% (0.81%). The deviation in D(98%)and D(2%)were within 1.71% and 4.10% respectively. In all 25 measurement locations from TMI/TMLI patients, planned and IC measured absolute dose agreed within +/- 1.20%. Although sectorial fluence verification using ArcCHECK measurement for PTVs chest from the five upper body TMI/TMLI plans showed mean +/- SD 2D gamma of 97.82% +/- 1.27%, the reconstruction method resulted poor mean (SD) 3D gamma of 92.00% (+/- 5.83%), 64.80% (+/- 28.28%), 69.20% (+/- 30.46%), 60.80% (+/- 19.37%) and 73.2% (+/- 20.36%) for PTVs brain, chest, torso, limb and upper body respectively. The corresponding deviation in median D(98%)and D(2%)of all PTVs were < 3.80% and 9.50%. Re-optimization of all upper body TMI/TMLI plans with new pitch and modulation factor of 0.3 and 3 leads significant improvement with 3D gamma of 100% for all PTVs and median D(98%)and D-2% < 1.6%. LOTS based PSQA for TMI/TMLI is accurate, robust and efficient. A field width, pitch and modulation factor of 5 cm, 0.3 and 3 for upper body TMI/TMLI plan is suggested for better dosimetric outcome and PSQA results.