Regulating the Solvation Structure of Nonflammable Electrolyte for Dendrite-Free Li-Metal Batteries

Abstract
High-energy-density Li-metal batteries are of great significance in the energy storage field. However, the safety hazards caused by Li dendrite growth and flammable organic electrolytes significantly hinder the widespread application of Li-metal batteries. In this work, we report a highly safe electrolyte composed of 4 M lithium bis(fluorosulfonyl)imide (LiFSI) dissolved in the single solvent trimethyl phosphate (TMP). By regulating the solvation structure of the electrolyte, a combination of nonflammability and Li dendrite growth suppression was successfully realized. Both Raman spectroscopy and molecular dynamics simulations revealed improved dendrite-free Li anode originating from the unique solvation structure of the electrolyte. Symmetric Li/Li cells fabricated using this nonflammable electrolyte had a long cycle life of up to 1000 h at a current density of 0.5 mA cm–2. Furthermore, the Li4Ti5O12/TMP-4/Li full cells also exhibited excellent cycling performance with a high initial discharge capacity of 170.5 mAh g–1 and a capacity retention of 92.7% after 200 cycles at 0.2 C. This work provides an effective approach for the design of safe electrolytes with favorable solvation structure toward the large-scale application of Li-metal batteries.
Funding Information
  • Ministry of Science and Technology of the People's Republic of China (2016YFB0100204)
  • National Natural Science Foundation of China (51772030)
  • Beijing Outstanding Young Scientists Program (BJJWZYJH01201910007023)
  • Beijing Key Research and Development Plan (Z181100004518001)