New Search

Export article
Open Access

Carrier photodynamics in 2D perovskites with solution-processed silver and graphene contacts for bendable optoelectronics

Ridwan F. Hossain, Misook Min, Liang-Chieh Ma, Shambhavi R. Sakri, Anupama B. Kaul
npj 2D Materials and Applications , Volume 5, pp 1-12; doi:10.1038/s41699-021-00214-3

Abstract: Silver (Ag) and graphene (Gr) inks have been engineered to serve as efficient electrical contacts for solution-processed two-dimensional (2D) organo-halide (CH3(CH2)3NH3)2(CH3NH3) n−1Pb n I3n+1 (n = 4) layered perovskites, where all inkjet-printed heterostructure photodetectors (PDs) were fabricated on polyimide (PI) substrates. To date, limited studies exist that compare multiple contacts to enable high-performance engineered contacts to 2D perovskites. Moreover, of these few reports, such studies have examined contacts deposited using vapor-based techniques that are time-consuming and require expensive, specialized deposition equipment. In this work, we report on the inkjet printed, direct contact study of solution-processed, 2D perovskite-based PDs formed on flexible PI substrates. Solution processing offers a cost-effective, expedient route for inkjet printing Gr and Ag using a dispersion chemistry developed in this work that is compatible with the underlying 2D perovskite layer to construct the PDs. The wavelength λ-dependent photocurrent I p peaked at λ ~ 630 nm for both PDs, consistent with the bandgap E g ~ 1.96 eV for our semiconducting 2D perovskite absorber layer. The external quantum efficiency was determined to be 103% for Ag-perovskite PDs, where strain-dependent bending tests were also conducted to reveal the opto-mechanical modulation of the photocurrent in our devices.
Keywords: graphene / substrates / PDs / 2D perovskite / layered perovskites

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "npj 2D Materials and Applications" .
References (58)
    Back to Top Top