Elastomer nanocomposites containing MXene for mechanical robustness and electrical and thermal conductivity

Abstract
A novel 2D nanomaterial, Ti3C2Tx MXene, added conductivity and reinforcement to a common elastomer, nitrile butadiene rubber (NBR). X-ray diffraction revealed the intercalation of lithium ions and elastomer chains into the MXene interlayer spacing, which enabled exfoliation in the elastomer. The reaction between MXene and NBR was proved by a stepwise Fourier transform infrared spectroscopy. With increase in MXene fractions, electrical and thermal conductivity of the composite increased to 9 x 10(-5) S cm(-1) and 0.69 W m(-1) K-1, respectively. At only 2.8 vol% MXene, a swelling ratio of 1.61 was achieved, representing a 75% reduction compared to NBR containing either graphene or carbon nanotubes at the same filler fraction. Tensile tests showed that with the increase in MXene content, Young's modulus increased while both tensile strength and elongation at break first increased and then decreased. Overall, latex compounding proved to be an efficient technique for forming NBR/MXene nanocomposites. The revealed reaction between MXene and NBR to create functional polymer nanocomposites could provide a platform for utilising MXene for other polymers.
Funding Information
  • Australian Research Council (LP160100717)