Polarization-gradient cooling of 1D and 2D ion Coulomb crystals

Abstract
We present experiments on polarization gradient cooling of Ca+ multi-ion Coulomb crystals in a linear Paul trap. Polarization gradient cooling of the collective modes of motion whose eigenvectors have overlap with the symmetry axis of the trap is achieved by two counter-propagating laser beams with mutually orthogonal linear polarizations that are blue-detuned from the S 1/2P 1/2 transition. We demonstrate cooling of linear chains of up to 51 ions and 2D-crystals in zig-zag configuration with 22 ions. The cooling results are compared with numerical simulations and the predictions of a simple model of cooling in a moving polarization gradient.
Funding Information
  • Horizon 2020 Framework Programme (741541 817482)
  • Austrian Science Fund (F71)