Bioactivity of 1-octacosanol from Senna crotalarioides (Fabaceae: Caesalpinioideae) to Control Spodoptera frugiperda (Lepidoptera: Noctuidae)

Abstract
The genus Spodoptera (Lepidoptera: Noctuidae) includes some of the most important insect pests that cause significant yield reductions and economic losses in the American and African continents (Aragón et al. 2011; Igyuve et al. 2018). Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae), commonly known as “gusano cogollero del maíz” (Spanish), fall armyworm, corn leafworm, and southern grass-worm, is a highly polyphagous pest that affects more than 180 crops, among which the following stand out for their importance in Western Hemisphere countries: Arachis hypogaea L. (peanut) (Fabaceae), Glycine max L. Merrill (soybean) (Fabaceae), Gossypium hirsutum L. (upland cotton) (Malvaceae), Linum usitatissimum L. (linseed) (Linaceae), Medicago sativa L. (alfalfa) (Fabaceae), Oryza sativa L. (Asian rice) (Poaceae), Phaseolus vulgaris L. (common bean) (Fabaceae), Saccharum officinarum L. (sugar cane) (Poaceae), Solanum lycopersicon L. (tomato) (Solanaceae), Solanum tuberosum L. (potato) (Solanaceae), Sorghum bicolor L. Moench (sorghum) (Poaceae), and Zea mays L. (maize) (Poaceae) (Hernández-Mendoza et al. 2008; Casmuz et al. 2010). In the case of maize, the larvae of S. frugiperda cause damage at all growth stages, including senescence (Rodríguez-del-Bosque et al. 2011). The presence of this indigenous insect in the Americas also has been reported in African cornfields (Goergen et al. 2016). Many yr ago, the control of Spodoptera species had been based on the use of conventional synthetic insecticides (approximately 3,000 tons of active ingredient per yr) (Blanco et al. 2014). However, the intense and non-rational use of these products has been associated with a strong selection pressure on insects, genetic variability (Pérez-Zubiri et al. 2016), and the development of insecticide resistance (León-García et al. 2012). This phenomenon limits the success of pest control in many countries. In addition, there is evidence of human intoxication due to exposure to the insecticides used in the management of Spodoptera pests (Barrientos-Gutiérrez et al. 2013). Alternative strategies have been proposed to control S. frugiperda, including the use of genetically modified crops (Aguirre et al. 2016), natural enemies (Nuñez-Valdez et al. 2008; Ordóñez-García et al. 2015), semiochemicals, and other natural product-based approaches (Guerrero et al. 2014).