Overexpression and Biochemical Characterization of an Endo-α-1,4-polygalacturonase from Aspergillus nidulans in Pichia pastoris

Abstract
Pectinases have many applications in the industry of food, paper, and textiles, therefore finding novel polygalacturonases is required. Multiple sequence alignment and phylogenetic analysis of AnEPG (an endo-α-1,4-polygalacturonase from Aspergillus nidulans) and other GH 28 endo-polygalacturonases suggested that AnEPG is different from others. AnEPG overexpressed in Pichia pastoris was characterized. AnEPG showed the highest activity at pH 4.0, and exhibited moderate activity over a narrow pH range (pH 2.0–5.0) and superior stability in a wide pH range (pH 2.0–12.0). It displayed the highest activity at 60 °C, and retained >42.2% of maximum activity between 20 and 80 °C. It was stable below 40 °C and lost activity very quickly above 50 °C. Its apparent kinetic parameters against PGA (polygalacturonic acid) were determined, with the Km and kcat values of 8.3 mg/mL and 5640 μmol/min/mg, respectively. Ba2+ and Ni2+ enhanced activity by 12.2% and 9.4%, respectively, while Ca2+, Cu2+, and Mn2+ inhibited activity by 14.8%, 12.8%, and 10.2% separately. Analysis of hydrolysis products by AnEPG proved that AnEPG belongs to an endo-polygalacturonase. Modelled structure of AnEPG by I-TASSER showed structural characteristics of endo-polygalacturonases. This pectinase has great potential to be used in food industry and as feed additives.
Funding Information
  • the national key Research and Development Program of China (2017YFD0200902)
  • National Natural Science Foundation of China (31370799)