New Search

Export article

Generic Multi-label Annotation via Adaptive Graph and Marginalized Augmentation

Lichen Wang, Zhengming Ding, Yun Fu

Abstract: Multi-label learning recovers multiple labels from a single instance. It is a more challenging task compared with single-label manner. Most multi-label learning approaches need large-scale well-labeled samples to achieve high accurate performance. However, it is expensive to build such a dataset. In this work, we propose a generic multi-label learning framework based on Adaptive Graph and Marginalized Augmentation (AGMA) in a semi-supervised scenario. Generally speaking, AGMA makes use of a small amount of labeled data associated with a lot of unlabeled data to boost the learning performance. First, an adaptive similarity graph is learned to effectively capture the intrinsic structure within the data. Second, marginalized augmentation strategy is explored to enhance the model generalization and robustness. Third, a feature-label autoencoder is further deployed to improve inferring efficiency. All the modules are jointly trained to benefit each other. State-of-the-art benchmarks in both traditional and zero-shot multi-label learning scenarios are evaluated. Experiments and ablation studies illustrate the accuracy and efficiency of our AGMA method.
Keywords: image retrieval / marginalized augmentation / multi-label annotation / Multi-label learning / adaptive graph

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "ACM Transactions on Knowledge Discovery from Data" .
References (20)
    Cited by 1 articles
      Back to Top Top