Rapid in Vitro Assessment of Clostridioides difficile Inhibition by Probiotics Using Dielectrophoresis to Quantify Cell Structure Alterations

Abstract
Clostridioides difficile (C. difficile) infection (CDI) is the primary cause of nosocomial antibiotic-associated diarrhea, with high recurrence rates following initial antibiotic treatment regimens. Restoration of the host gut microbiome through probiotic therapy is under investigation to reduce recurrence. Current in vitro methods to assess C. difficile deactivation by probiotic microorganisms are based on C. difficile growth inhibition, but the cumbersome and time-consuming nature of the assay limits the number of assessed permutations. Phenotypic alterations to the C. difficile cellular structure upon interaction with probiotics can potentially enable rapid assessment of the inhibition without the need for extended culture. Because supernatants from cultures of commensal microbiota reflect the complex metabolite milieu that deactivates C. difficile, we explore coculture of C. difficile with an optimal dose of supernatants from probiotic culture to speed growth inhibition assays and enable correlation with alterations to its prolate ellipsoidal structure. Based on sensitivity of electrical polarizability to C. difficile cell shape and subcellular structure, we show that the inhibitory effect of Lactobacillus spp. supernatants on C. difficile can be determined based on the positive dielectrophoresis level within just 1 h of culture using a highly toxigenic strain and a clinical isolate, whereas optical and growth inhibition measurements require far greater culture time. We envision application of this in vitro coculture model, in conjunction with dielectrophoresis, to rapidly screen for potential probiotic combinations for the treatment of recurrent CDI.
Funding Information
  • National Institute of Allergy and Infectious Diseases (1R21AI130902-01)
  • Air Force Office of Scientific Research (FA2386-18-1-4100)
  • University of Virginia