New Search

Advanced search
Export article
Open Access

Implementasi Metode Item-Based Collaborative Filtering dalam Pemberian Rekomendasi Calon Pembeli Aksesoris Smartphone

Sciprofile linkBondan Prasetyo, Hanny Haryanto, Setia Astuti, Sciprofile linkErna Zuni Astuti, Sciprofile linkYuniarsi Rahayu
Published: 30 September 2019
Jurnal Eksplora Informatika , Volume 9, pp 17-27; doi:10.30864/eksplora.v9i1.244

Abstract: Flazzstore merupakan sebuah toko yang bergerak dibidang penjualan casing smartphone. Terdapat banyak produk yang berbeda-beda dengan banyak tema yang berbeda pula, hal ini membuat beberapa user kesulitan dalam menentukan pilihan mengenai produk yang akan dipilih. Perlunya sebuah sistem rekomendasi yang mampu memberikan rekomendasi produk kepada user, untuk memudahkan user dalam memilih produk yang akan dibelinya. Penelitian ini menggunakan metode Item-Based Collaborative Filtering, metode ini mencari similarity/kesamaan item dengan item lainnya. Sistem akan mencari rating tiap item dan menghitung nilai similarity menggunakan persamaan pearson correlation-based similarity. Kemudian nilai dari hasil perhitungan similarity akan digunakan untuk menghitung nilai prediksi tiap produk dengan menggunakan persamaan weighted average of deviation. Sebelum direkomendasikan kepada pelanggan dari hasil prediksi tersebut dihitung nilai Mean Absolute Error (MAE) dihitung selisih antara nilai rating sebenarnya dengan prediksi, dan kemudian diurutkan mulai dari terkecil ke terbesar untuk direkomendasikan kepada user. Hasil dari penelitian menunjukkan kecilnya nilai rata-rata MAE 0,572039 namun untuk proses eksekusi, waktu yang dibutuhkan cukup lama yaitu 6,4 detik. Penelitian berikutnya dapat mengombinasikan pendekatan metode content based filtering dan collaborative filtering atau disebut dengan Item Based Clustering Hybrid Method (ICHM) supaya hasil yang diperoleh lebih baik dan dapat mempersingkat waktu yang dibutuhkan.
Keywords: Based Collaborative Filtering / Item Dengan / kepada user / Metode Item Based

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Jurnal Eksplora Informatika" .
Back to Top Top