Route of intestinal absorption and tissue distribution of iron contained in the novel phosphate binder ferric citrate

Abstract
Background Anemia of chronic kidney disease (CKD) is, in part, caused by hepcidin-mediated impaired iron absorption. However, phosphate binder, ferric citrate (FC) overcomes the CKD-induced impairment of iron absorption and increases serum iron, transferrin saturation, and iron stores and reduces erythropoietin requirements in CKD/ESRD patients. The mechanism and sites of intestinal absorption of iron contained in FC were explored here. Methods Eight-week old rats were randomized to sham-operated or 5/6 nephrectomized (CKD) groups and fed either regular rat chow or rat chow containing 4% FC for 6 weeks. They were then euthanized, and tissues were processed for histological and biochemical analysis using Prussian blue staining, Western blot analysis to quantify intestinal epithelial tight junction proteins and real-time PCR to measure Fatty Acid receptors 2 (FFA2) and 3 (FFA3) expressions. Results CKD rats exhibited hypertension, anemia, azotemia, and hyperphosphatemia. FC-treated CKD rats showed significant reductions in blood pressure, serum urea, phosphate and creatinine levels and higher serum iron and blood hemoglobin levels. This was associated with marked increase in iron content of the epithelial and subepithelial wall of the descending colon and modest iron deposits in the proximal tubular epithelial cells of their remnant kidneys. No significant difference was found in hepatic tissue iron content between untreated and FC-treated CKD or control groups. Distal colon’s epithelial tight Junction proteins, Occludin, JAM-1 and ZO-1 were markedly reduced in the CKD groups. The FFA2 expression in the jejunum and FFA3 expression in the distal colon were significantly reduced in the CKD rats and markedly increased with FC administration. Conclusion Iron contained in the phosphate binder, FC, is absorbed by the distal colon of the CKD animals via disrupted colonic epithelial barrier and upregulation of short chain fatty acid transporters.

This publication has 39 references indexed in Scilit: