Statistical Characteristics and Environmental Conditions of the Warm-Season Severe Convective Events over North China

Abstract
Based on severe weather reports, surface precipitation observations, surface routine observations, and the European Center for Medium-Range Weather Forecasts ERA5 reanalysis dataset during the warm seasons (May–September) of 2011–2018 over North China, this paper analyzes the statistical characteristics and environmental conditions of three types of severe convective events. Results are compared between events with different altitudes (i.e., mountains and plains), severities (i.e., ordinary and significant), and months. Hail and thunderstorm high winds (THWs) are more common over the mountains whereas short-duration heavy rainfall (SDHR) is more frequent over the plains. The occurrence frequency of severe convective events exhibits distinct monthly and diurnal variations. Analyses of the environmental parameters provide reference for the potential forecasting of severe convective events over this region. Specifically, the 850–500 hPa temperature lapse rate (LR85), pseudo-equivalent potential temperature at 500 hPa (thetase500), and precipitable water (PW) are skillful in distinguishing hail and THW environments from SDHR environments, and thetase500 is useful in discriminating between hail and THW environments. The convective environments over the plains are characterized by significantly higher (lower) PW (LR85) compared with mountains. The skill of these parameters in forecasting the severity of the convective hazards is limited. Probability distributions in the two parameters space indicate that the occurrence of significant hail requires both higher most unstable convective available potential energy (MUCAPE) and stronger 0–6 km bulk wind shear (SHR6) compared with ordinary hail. Compared with ordinary THWs, the significant THWs over the mountains depend more on the SHR6 whereas those over the plains rely more on the MUCAPE. The significant SDHR events over the plains tend to occur under a variety of instability conditions. The thermodynamic parameters (i.e., MUCAPE, thetase500, and downdraft convective available potential energy), and PW are significantly higher in July–August, whereas the LR85 and vertical wind shear are apparently higher in May, June and September.