Axl and Mertk Receptors Cooperate to Promote Breast Cancer Progression by Combined Oncogenic Signaling and Evasion of Host Antitumor Immunity

Abstract
Despite the promising clinical benefit of targeted and immune checkpoint blocking therapeutics, current strategies have limited success in breast cancer, indicating that additional inhibitory pathways are required to complement existing therapeutics. TAM receptors (Tyro-3, Axl, and Mertk) are often correlated with poor prognosis due to their capacities to sustain an immunosuppressive environment. Here we ablate Axl on tumor cells using CRISPR/Cas9 gene editing, and by targeting Mertk in the tumor microenvironment, we observe distinct functions of TAM as oncogenic kinases as well as inhibitory immune receptors. Depletion of Axl suppressed cell intrinsic oncogenic properties, decreased tumor growth, reduced the incidence of lung metastasis and increased overall survival of mice when injected into mammary fatpad of syngeneic mice, and demonstrated synergy when combined with anti-PD1 therapy. Blockade of Mertk function on macrophages decreased efferocytosis, altered the cytokine milieu, and resulted in suppressed macrophage gene expression patterns. Mertk KO mice or treatment with anti-Mertk neutralizing mAb also altered the cellular immune profile, resulting in a more inflamed tumor environment with enhanced T cell infiltration into tumors and T cell-mediated cytotoxicity. The anti-tumor activity from Mertk inhibition was abrogated by depletion of cytotoxic CD8α T cells by using anti-CD8α mAb or by transplantation of tumor cells into B6.CB17-Prkdc SCID mice. Our data indicate that targeting Axl expressed on tumor cells and Mertk in the tumor microenvironment are predicted to have a combinatorial benefit to enhance current immunotherapies and that Axl and Mertk have distinct functional activities that impair host anti-tumor response.
Funding Information
  • NIH (NIH CA 1650771)

This publication has 50 references indexed in Scilit: