Kinesin superfamily protein expression and its association with progression and prognosis in hepatocellular carcinoma

Abstract
Objectives: In this study, we characterized the expression of 32 other kinesin superfamily proteins (KIFs) and analyzed their association with the progression and prognosis of hepatocellular carcinoma (HCC). Materials and Methods: The data from 295 HCC patients from The Cancer Genome Atlas were included in the study. An independent t-test was used to compare the KIF levels in HCC and adjacent tissues. Pearson's Chi-square test was used to assess the relationships of KIF expression with tumor biomarkers and clinicopathological parameters. Kaplan–Meier plots and log-rank tests were used to analyze survival, and univariate and multivariate analyses were used to identify independent prognostic factors. Results: The expressions of 32 KIFs were compared between HCC and adjacent nontumor tissues. Among them, 12 KIFs showed no statistical significance, 17 KIFs were upregulated, and three KIFs were downregulated in tumor tissues. The levels of some KIFs were markedly correlated with that of biomarkers for the S phase and proliferation. KIF2A and KIFC3 expression was positively associated with biomarkers for cell invasion and migration. Some KIF overexpression was significantly associated with neoplastic pathological grade and tumor-node-metastasis staging. Furthermore, KIF2C, KIF4A, and KIF11 overexpression were significantly associated with shorter relapse-free survival times. KIF2A, KIF2C, KIF3A, KIF4B, KIF11, KIF15, KIFC1, and KIFC3 overexpression was associated with shorter overall survival (OS) times, whereas higher expression of KIF19 was associated with a longer OS time. Further multivariate analyses suggested that only KIF4B was an independent prognostic factor for HCC. Conclusions: Most overexpressions of abnormal KIFs were significantly associated with HCC progression and prognosis, indicating that KIFs could be prognostic and therapeutic biomarkers for HCC. However, it is necessary to further study the function of KIFs and their mechanisms involved in HCC.