Discovery of Novel Pyrazolo[3,4-b] Pyridine Derivatives with Dual Activities of Vascular Remodeling Inhibition and Vasodilation for the Treatment of Pulmonary Arterial Hypertension

Abstract
Current pulmonary arterial hypertension (PAH) therapeutic strategies mainly focus on vascular relaxation with less emphasis on vascular remodeling, which results in poor prognosis. Hence, dual pathway regulators with vasodilation effect via soluble guanylate cyclase (sGC) stimulation and vascular remodeling regulation effect by AMP-activated protein kinase (AMPK) inhibition will provide more advantages and potentialities. Herein, we designed and synthesized a series of novel pyrazolo[3,4-b] pyridine derivatives based on sGC stimulator and AMPK inhibitor scaffolds. In vitro, 2 exhibited moderate vasodilation activity and higher proliferation and migration suppressive effects compared to riociguat. In vivo, 2 significantly decreased right ventricular systolic pressure (RVSP), attenuated pulmonary artery medial thickness (PAMT) and right ventricular hypertrophy (RVH) in hypoxia-induced PAH rat models (i.g.). Given the unique advantages of significant vascular remodeling inhibition and moderate vascular relaxation based on dual pathways regulation, we proposed 2 as a promising lead for anti-PAH drug discovery.
Funding Information
  • National Natural Science Foundation of China (81573287, 81773640)