Histone methyltransferase DOT1L controls state‐specific identity during B cell differentiation

Abstract
Differentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B‐cell fate remain unclear. Here, we identified a role for the histone H3K79 methyltransferase DOT1L in controlling B‐cell differentiation. Mouse B cells lacking Dot1L failed to establish germinal centers (GC) and normal humoral immune responses in vivo. In vitro, activated B cells in which Dot1L was deleted showed aberrant differentiation and prematurely acquired plasma cell characteristics. Similar results were obtained when DOT1L was chemically inhibited in mature B cells in vitro. Mechanistically, combined epigenomics and transcriptomics analysis revealed that DOT1L promotes expression of a pro‐proliferative, pro‐GC program. In addition, DOT1L indirectly supports the repression of an anti‐proliferative plasma cell differentiation program by maintaining the repression of Polycomb Repressor Complex 2 (PRC2) targets. Our findings show that DOT1L is a key modulator of the core transcriptional and epigenetic landscape in B cells, establishing an epigenetic barrier that warrants B‐cell naivety and GC B‐cell differentiation.
Funding Information
  • Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO‐VICI‐016.130.627)
  • KWF Kankerbestrijding (NKI 2014‐7232, NKI 2019‐2/12825)
  • ZonMw (Top 91213018, Top 91218022)