Hematogenous Donor Cell Routing Pathway After Transamniotic Stem Cell Therapy

Abstract
Donor mesenchymal stem cells (MSCs) have been documented in fetal and maternal circulations after plain intra-amniotic injection, with diverse therapeutic effects. We sought to determine the pathway of this unique cell kinetic route. Rat fetuses (n = 226) were divided into two groups based on the content of intra-amniotic injections performed on gestational day 17 (E17): either a concentrated suspension of luciferase-labeled syngeneic amniotic fluid-derived MSCs (afMSCs; n = 111), or acellular luciferase (n = 115). Samples from placenta, chorion, amnion, amniotic fluid, stomach fluid, peripheral blood, and umbilical cord were procured at five daily time points thereafter until term (E18-22) for luminometry. In addition, 53 sets of fresh gestational membranes (chorion/amnion combined) from nonmanipulated term fetuses were secured to transwell inserts for in vitro analysis of MSC migration using luciferase-labeled afMSCs. Statistical analyses included the Mann-Whitney U-test, Wald test, nonlinear regression modeling, and Fisher's exact test. In vivo, luciferase activity was observed in the amnion, chorion, and placenta of fetuses receiving cells, but not in those receiving acellular luciferase (P < 0.001). There was a consistent nonlinear age-dependent relationship of luciferase activity between the amnion, chorion, and placenta following a parabolic bimodal pattern characterized by significantly higher early preterm (E18) and late-term (E22) activities (P < 0.001), with no differences between E21 and E22 (P = 0.12). In vitro, the presence of cells was documented by luminometry in 21/53 (39.6%) of the assays, in suspension and/or attached to the plastic substrate, and within all screened gestational membrane sets, irrespective of stimuli with collagen coating or fetal bovine serum. We conclude that, after intra-amniotic injection, donor MSCs undergo controlled cell routing, as opposed to passive clearance. Transgestational membrane transport appears to constitute the path for donor cells to reach the placenta, a known gateway to the fetal circulation, significantly expanding the potential applications of transamniotic stem cell therapy.