Proceedings of Universities. Applied Chemistry and Biotechnology

Journal Information
ISSN / EISSN: 22272925 / 25001558
Total articles ≅ 432

Latest articles in this journal

A. V. Malkova, I. Yu. Evdokimov, M. V. Shirmanov, A. N. Irkitova, D. E. Dudnik
Proceedings of Universities. Applied Chemistry and Biotechnology, Volume 11; https://doi.org/10.21285/2227-2925-2021-11-3-393-402

Abstract:
This article aims to develop a probiotic for animals and aquaculture based on the Bacillus toyonensis B-13249 and Bacillus pumilus B-13250 strains. The selection of a nutrient medium was conducted for cultivating the inoculum of these microorganisms. Several bacteria fermentations of the Bacillus genus were performed in biological reactors with a capacity of 15 and 250 l. A technology for obtaining a finished probiotic for animals and aquaculture was developed. The results indicate that L-broth is the most optimal nutrient medium for cultivating the studied strains. The cultivation of B. toyonensis B-13249 and B. pumilus B-13250 strains in fermenters revealed that sporulation begins after 4–8 hours of fermentation. In contrast to the vegetative medium, the fermentative medium helped the bacilli develop a higher optical density (the maximum value in the B. pumilus strain – 2.400±0.149), pH value (maximum value in the B. toyonensis strain – 8.483±0.609) and titer (at least 1010 CFU/g). After 20–24 hours of incubation, both strains of bacilli in the fermenter, almost completely pass into endospores, which serve as a signal for the start of biomass centrifugation. This was indicated by the following: from a 15 l fermenter – 83.3±6.1 g of concentrate, from a 250 l fermenter – 499.8±51.4 g. The number of bacilli in a concentrated state was at least 1·1011 CFU/g for both strains. Obtaining a finished preparation required mixing bacterial concentrates with maltodextrin to a titer of at least 1·1010 CFU/g. The number of bacteria in the preparation checked every month during the year, recorded no value less than 1·1010 CFU/g. Thus, L-broth is most favorable for growing the mother culture of the B. toyonensis B-13249 and B. pumilus B-13250 strains, and fermentative nutrient medium – for the cultivation in fermenters. The expiry date of the bacilli-based biological preparation is at least 12 months, during which the drug’s polycomponence, color and consistency are preserved, in addition to the bacteria titer (at least 1·1010 CFU/g) and their viability.
Yu. D. Smirnova, G. Yu. Rabinovich, N. V. Fomicheva
Proceedings of Universities. Applied Chemistry and Biotechnology, Volume 11; https://doi.org/10.21285/2227-2925-2021-11-3-421-429

Abstract:
Резюме: В последние десятилетия отмечается развитие и внедрение нанотехнологий, в том числе и в различных областях сельского хозяйства. Идет активный поиск способов получения препаратов для растениеводства с наночастицами, которые быстрее включаются в метаболические процессы растений. Целью данной работы являлось получение наноразмерного кремнегуминового препарата и его апробация на растениях картофеля. В качестве источника гуминовых веществ был использован жидкий гуминовый препарат БоГум (разработка Всероссийского научно-исследовательского института мелиорированных земель), источника кремния – метасиликат натрия. Для достижения наноразмерности образцов применяли метод ультразвукового диспергирования. Получение осуществляли путем введения источника кремния в количестве 0,1% (по SiO2) в БоГум, после чего применяли ультразвуковое воздействие в течение 5, 10, 15 и 20 мин. Анализ полученных образцов на анализаторе размера частиц 90 Plus/MAS показал, что с увеличением времени диспергирования эффективный диаметр частиц изменялся незначительно. В то же время отмечено перераспределение частиц: при воздействии на образцы в течение 20 мин увеличивалось количество частиц меньшего размера. После 5 мин обработки диапазон распределения частиц составил 115±13–830±23 нм, после 20 мин воздействия диаметр частиц приходился на две области – 81±8–120±10 и 280±4–470±18 нм. Применение ультразвука способствовало сохранению стабильного агрегатного состояния полученного препарата, большей микробиологической активности и большего содержания гуминовых кислот по сравнению с кремнегуминовым препаратом, полученным без применения ультразвука. Апробацию нового наноразмерного кремнегуминового препарата проводили на растениях картофеля. Обработка клубней перед посадкой с последующим некорневым опрыскиванием вегетирующих растений способствовала повышению урожайности картофеля на 18,7%. Отмечали изменения в содержании монокремниевых и поликремниевых кислот в почве, а также накопление кремния в ботве картофеля при применении кремнегуминовых препаратов в среднем на 0,96% абс.
E. M. Serba, L. V. Rimareva, M. B. Overchenko, N. I. Ignatova, M. E. Medrish, A. A. Pavlova, E. N. Sokolova
Proceedings of Universities. Applied Chemistry and Biotechnology, Volume 11; https://doi.org/10.21285/2227-2925-2021-11-3-384-392

Abstract:
Development of sustainable biotechnologies for deep processing of grain raw materials requires effective mechanisms of obtaining strong wort for alcohol production. To provide qualitative characteristics of biochemical composition and rheological properties of strong wort, it is necessary to select optimal enzyme systems and conditions for deep conversion of high-molecular weight polymers of the grain. Previous research has proven the efficiency of carbohydrases for processing grain raw materials. However, there is little evidence on the catalytic effect of phytase, including in combination with other hydrolytic enzymes, on the degree of hydrolysis of polymers in grain raw materials when preparing strong wort. This paper demonstrates the effect of proteases and phytases in a multi-enzyme composition, as well as the conditions of enzymatic processing of raw materials, on the rheological and biochemical parameters of strong wort. Wheat, rye and corn were investigated. The synergism of the combined effect of studied hydrolases, including phytolytic and proteolytic enzymes, contributed to an increase in polymer conversion in this grain raw material and the concentration of soluble dry substances of the wort by 1.5 times. Using the proteases and phytases in the multienzyme composition allowed the concentration of the following components in the wort to be increased: glucose – by 1.2–1.3 times; amine nitrogen – by 1.5–2.2 times; phosphorus ions – by 1.4–4.3 times. Additionally, in the wort samples, the content of amino acids in the free form increased by over 4 times. It is shown that the pretreatment of grain raw materials at a temperature of 80–90ºС for 6 hours and saccharification for 1–2 hours using a complete complex of enzymes containing α-amylase, glucoamylase, xylanase, protease and phytase, allows a strong wort with a dry matter content of over 30% to be obtained. Moreover, a significant decrease in viscosity was noted (particularly for rye wort – by 1.3–1.9 times). Our results confirm the essential role of enzymes exhibiting substrate specificity to protein and phytic polymers in grain raw materials.
G K. Bishimbayeva, , S. A. Saidullayeva, , A. Bold,
Proceedings of Universities. Applied Chemistry and Biotechnology, Volume 11; https://doi.org/10.21285/2227-2925-2021-11-3-340-348

Abstract:
The metallurgical industry is one of the cornerstones of contemporary chemical science and industry and it is developing rapidly in many countries. The widespread introduction of metal extraction, concentration and separation as the most productive methods entails the need to search for and create new effective metal extractants. Among the compounds, suitable for use as extractants, the most widespread are organic phosphites and phosphates, which allow performing extraction processes with good selectivity and efficiency. The purposes of this article include finalizing the optimal synthesis conditions and developing larger batches of 4,5-dimethyl-2-(2,2,2-trifluoroethoxy)-1,3,2-dioxaphospholane and 5,5-dimethyl-2-(2,2,3,3,4,4,5,5- octafluoropentoxy)-1,3,2-dioxaphosphorinane, and study of the extraction properties of the obtained phosphorus- containing heterocyclic compounds in the separation of uranium from the commercial desorbate. The synthesis of new representatives of the indicated polyfluoroalkylated five- and six-membered heterocyclic phosphorus compounds was conducted using the interaction of 2-chloro-1,3,2-dioxaphospholane with trifluoroethanol and the substitution–cyclization reaction of polyfluoroalkylated dichlorophosphite with 2,2-dimethyl- 1,3-propanediol. Reactions easily proceed in triethylamine–hexane or pyridine–diethyl ether systems at temperatures ranging between minus ten to room temperature, with the output of target heterocycles of 53–57%. The studies of extraction properties of synthesized poly-fluorinealkylated dioxaphospholane and dioxaphosphorinane show that the use of these phosphorus-containing heterocyclic compounds as extractants allows extracting a technically valuable metal up to 12.4 and 15.2%, respectively. Nitric and sulfuric acid solutions of commercial desorbate of hydrometallurgical production in Kazakhstan were used as feedstock in the extraction process.
A. V. Kryzhko, U. M. Budzhurova, E. D. Ametova, I. A. Novikov, E. E. Soboleva, N. N. Smagliy, G. V. Reshetnik
Proceedings of Universities. Applied Chemistry and Biotechnology, Volume 11; https://doi.org/10.21285/2227-2925-2021-11-3-430-440

Abstract:
This article aims to study the influence of the culture of the Bacillus thuringiensis var. thuringiensis 888 on the quality of the vegetative mass of Origanum vulgare in terms of the number of antioxidants and flavonoids, yield and composition of the essential oil. The research material included a liquid spore culture of the B. thuringiensis 888 strain, samples of oregano: sample no. g-4, containing 52.0% carvacrol in essential oil; No. 2 containing 59.85% α-terpineol; No. 1 with a predominant content of germacrene D (21.5%) and β- caryophyllene (19.4%). Soluble carbohydrates in the plants were determined using M.S. Dubois’s method, flavonoids – spectrophotometrically at 420 nm following R.A. Bubenchikov’s method. The total content of antioxidants was determined using the reduction of iron(III) chloride to iron(II) chloride. The essential oil content of Origanum vulgare was determined by using hydrodistillation following A.S. Ginsberg. Gas chromatography was used to determine component composition of the essential oil. The results show that treating the O. vulgare samples with the spore culture of B. thuringiensis 888 strain culture does not significantly affect the accumulation of terpenoid quinones, tochromanols and water-soluble antioxidants in leaves. It has been shown that treating oregano with an ordinary liquid spore culture of the B. thuringiensis 888 strain promotes the formation of a persistent tendency towards the accumulation of reducing sugars in the vegetative mass of plants — up to 30.8% compared to the control. Treating plants with a culture of B. Thuringiensis 888 strain promoted an increase in the essential oil content in O. vulgare plants of the sample no. 1 by 2.4 times, as compared to the control and did not significantly affect the essential oil content of the samples no. 2 and no. g-4. The sample no. g-4 was the most resistant to treatment with entomopathogenic bacteria, and the content of linalool and caryophyllene oxide in essential oils decreased by 44.6 and 37.1%, respectively, and linalyl acetate by 4.3 times compared with the control, as well as the accumulation of α-terpineol by 86.1%.
G. B. Nedvetskaya, Yu. A. Aizina
Proceedings of Universities. Applied Chemistry and Biotechnology, Volume 11; https://doi.org/10.21285/2227-2925-2021-11-3-497-501

Abstract:
Acetamides are building blocks for the synthesis of compounds containing pharmacophores in their structure, manifesting a diverse range of biological activity. The drugs based on these substances possess antidiabetic effect and inhibit blood coagulation. Some of them act as chemosensitizers (i.e., cancer cell inhibitors). However, the full potential of these compounds remains to be fully accomplished. In a previous study, we synthesised acetamides with the RCONHCH (R´) CCl3 general formula (where R = CH3, CH2Cl; R´ = C6H5, C6H4CH3, C6H4OCH3, C6H4OH) and studied their acid-base behaviour. The NH-acidity of the studied acetamides is controlled by the polar effects of substituents. In this paper, the potential biological activity of the previously obtained acetamides is calculated, and the dependence of their biological potential on the NH-acidity values is elucidated. Prediction of biological activity was carried out using the PASS software. An analysis of the types of biological activity occurring in all compounds allowed us to determine a linear dependence between the probability of biological potential and the value of dissociation constant.
E. A. Skiba, O. I. Pyatunina
Proceedings of Universities. Applied Chemistry and Biotechnology, Volume 11; https://doi.org/10.21285/2227-2925-2021-11-3-413-420

Abstract:
All over the world, miscanthus is positioned as an extremely promising and rapidly renewable cellulose- containing raw material for the production of a large number of substances of chemical and biotechnological synthesis. The Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch оf the Russian Academy of Sciences has been developing its own methods of treating miscanthus using diluted solutions of nitric acid. While the amount of a waste solution (liquid phase) is 20 times greater than the target product — a solid phase -- intended for enzymatic hydrolysis and further microbiological synthesis of bioethanol, bacterial cellulose and other valuable products. The hypothesis states that a nitric acid solution after treatment with miscanthus, which was neutralized with ammonium hydrate (hereinafter referred to as the preparation), is a combined lignohumic fertilizer. Testing this hypothesis has required studying the growth-regulating activity of the preparation using the example of sowing pea seeds. The results show that, depending on the degree of dilution and the exposure time, the preparation acts in two ways: either as a stimulant or as a growth inhibitor. Thus, at a dilution rate of 1:10, the preparation acts as an inhibitor, and at a dilution rate of 1:1,000,000, its effect ceases. The working range includes the dilution rate between 1:100 and 1:10,000, when an increase in germination energy and rate is observed by 2–6% compared to the control and root growth is stimulated by 21–29%, i.e. an auxin-like growth-stimulating effect is observed. With prolonged endurance during the 4th day, the preparation showed a growth-inhibiting effect, indicated by the decrease in the germination energy and rate, the length of the stems and roots of the sowing pea. The new preparation showing growth-stimulating activity under certain conditions, supposedly confirms the hypothesis that it is a combined lignohumic fertilizer.
Yu. A. Gismatulina, V. V. Budaeva, , N. V. Bychin, E. K. Gladysheva, N. A. Shavyrkina, G. F. Mironova, Yu. V. Sevastyanova
Proceedings of Universities. Applied Chemistry and Biotechnology, Volume 11; https://doi.org/10.21285/2227-2925-2021-11-3-460-471

Abstract:
Scaling biosynthesis of bacterial nanocellulose (BNC) allowed samples of composite paper with an increased proportion of BNC to be obtained. This work aims to study BNC samples and bleached soft wood kraft pulp (BSKP) composite paper with a ratio of components varying across a wide range: 10:90, 30:70, 50:50, 60:40, 70:30, 90:10. The method of paper manufacturing was chosen based on the determinations of strength and deformation properties of composite samples with the BNC:BSKP ratio of 20:80. Surface application of BNT on BSKP handsheet provided for an increase in the strength values (tear resistance – by 37%, burst index – by 17%) and deformation characteristics (tension stiffness – by 66%, fracture work – by 8%, breaking length – by 4%) compared to a reference sample. The formation of composites is confirmed in all samples. Scanning electron spectroscopy revealed that paper composites comprise interlaced micro BSKP and nano BNC fibres. As the proportion of BNC in composites elevated, densification of the structure was observed due to an increased fraction of cross-linked nanosized elements. IR spectroscopy indicated the resemblance of cellulose structure in all samples. It was found that an increase in the degree of polymerisation of composite paper is directly proportional to an increase in the BNC amount in the samples. The filtering ability of composite paper samples against microorganisms in the culture liquid of the Medusomyces gisevii Sa-12 producer was studied. It should be noted that yeast retention is achieved with 70% BNC in the paper composite. The presented properties of the new material determine prospects for its use in filtering microorganisms.
A. S. Burlachenko, O. V. Salishcheva, L. S. Dyshlyuk
Proceedings of Universities. Applied Chemistry and Biotechnology, Volume 11; https://doi.org/10.21285/2227-2925-2021-11-3-441-448

Abstract:
: The paper examines the biodegradation rate of cocamidopropyl betaine by bacteria of the genus Pseudomonas and activated sludge. The following microorganisms were taken as destructor strains: Pseudomonas fluorescens TR (VKPM B-4881), Pseudomonas putida TP-19 (B-6582), Pseudomonas stutzeri T (B-4904), Pseudomonas putida TSh-18 (B-2950), Pseudomonas putida TO (B-3959), Pseudomonas mendocina 2S (B-4710), Pseudomonas oleovorans TF4-1L (B-8621) and activated sludge obtained at activated sludge reactors of a Kuzbass plant. Biooxidation of surfactant samples was carried out in 250 cm3glass flasks, placed into an incubator shaker, at a constant temperature of 30ºС for pure cultures and 18ºС for activated sludge. The destructor strain should reduce the surfactant concentration to safe values within a minimum time interval. Pseudomonas stutzeri T (B-4904) and Pseudomonas fluorescens TR (B-4881) strains provided the shortest half-life of the surfactant under study – 2.5 and 2.6 days, respectively. For Pseudomonas putida TO (B-3959), Pseudomonas putida TSh-18 (B-2950) and Pseudomonas oleovorans TF4-1L (B-8621) strains, these values amounted to 3.0, 4.5 and 4.9 days, respectively. The maximum half-life of the surfactant under study was demonstrated by Pseudomonas mendocina 2S (B-4710) and Pseudomonas putida TP-19 (B-6582) microorganisms – 5.5 and 6.0 days, respectively. The maximum biodegradation of the surfactant was observed under its exposure to the biocenosis of microorganisms. Over 14 days, the concentration of cocamidopropyl betaine decreased to 0.27% of its initial concentration. The efficiency of Pseudomonas bacteria as destructors of surfactants was demonstrated. Bacteria of this genus exhibit a shorter generation time and a higher rate of biomass growth when compared to other strains and a shorter period of adaptation to surfactants when compared to activated sludge. Capable of reducing surfactant concentrations to safe values in a minimum time interval, Pseudomonas strains can be used as an effective agent in the development of technologies for wastewater purification from amphoteric surfactants.
I. E. Minevich, A. P. Nechiporenko, A. A. Goncharova, V. E. Sitnikova
Proceedings of Universities. Applied Chemistry and Biotechnology, Volume 11; https://doi.org/10.21285/2227-2925-2021-11-3-449-459

Abstract:
Germination is an environmentally friendly and convenient approach to enhancing the biochemical potential of food plant raw materials. The nutritional value of raw materials and the functional properties of protein contained therein can be significantly improved by activatying the inherent enzyme system. Bioactivation not only increases the amount of water-soluble protein fractions, but also promotes accumulation of free amino and fatty acids and easily soluble reducing sugars. We used flax seeds as a source of essential polyunsaturated fatty acids, dietary fibres, complete protein, polypeptides and lignans to support the most important physiological functions of the human body. The aim was to study the dynamics of macronutrients in the process of short-term germination of flax seeds by chemical and spectroscopic methods. Flax seeds were germinated in laboratory conditions in special trays at a temperature of 18–20 ºС for 5 days with periodic moistening. Visual changes occurring in flax seeds at all stages of short-term germination are demonstrated. The periodicity of changes in the main macronutrients of flax seeds is shown. It is concluded that, during the studied period of germination, the principal hydrolytic decomposition of seed storage proteins was incomplete, leading to a permanent decrease, first of all, in the content of proteins and protein nitrogen. Based on the changes in the lipid content and acid number, the intensity of the peaks associated with functional groups in the lipid region, in particular, the band at 1748 cm-1 assigned to stretching vibrations of C=Ogroups of fatty acids, no degradation of storage lipids at an early stage of germination was assumed. The accumulation of soluble substances during the studied germination period is demonstrated, including watersoluble protein compounds, as well as water-soluble polysaccharides and products of their hydrolytic degradation. Sprouted flax seeds are a valuable ingredient for producing healthy foods.
Back to Top Top