Biosensors

Journal Information
EISSN: 20796374
Published by: MDPI
Total articles ≅ 2,438

Latest articles in this journal

Published: 8 December 2022
by MDPI
Journal: Biosensors
Biosensors, Volume 12; https://doi.org/10.3390/bios12121151

Abstract:
In this study, using pure and copper-doped titanium dioxide (Cu-TiO2) nanostructures as the base matrix, enzyme-less label free myoglobin detection to identify acute myocardial infarction was performed and presented. The Cu-TiO2 nanomaterials were prepared using facile sol–gel method. In order to comprehend the morphologies, compositions, structural, optical, and electrochemical characteristics, the pure and Cu-TiO2 nanomaterials were investigated by several techniques which clearly revealed good crystallinity and high purity. To fabricate the enzyme-less label free biosensor, thick films of synthesized nanomaterials were applied to the surface of a pre-fabricated gold screen-printed electrode (Au-SPE), which serves as a working electrode to construct the myoglobin (Mb) biosensors. The interference study of the fabricated biosensor was also carried out with human serum albumin (HSA) and cytochrome c (cyt-c). Interestingly, the Cu-doped TiO2 nanomaterial-based Mb biosensor displayed a higher sensitivity of 61.51 µAcm−2/nM and a lower detection limit of 14 pM with a response time of less than 10 ms.
Published: 8 December 2022
by MDPI
Journal: Biosensors
Biosensors, Volume 12; https://doi.org/10.3390/bios12121150

Abstract:
Radiofrequency ablation (RFA) is a minimally invasive form of thermotherapy with great potential in cancer care, having the capability of selectively ablating tumoral masses with a surface area of several cm2. When performing RFA in the proximity of a blood vessel, the heating profile changes due to heat dissipation, perfusion, and impedance changes. In this work, we provide an experimental framework for the real-time evaluation of 2D thermal maps in RFA neighboring a blood vessel; the experimental setup is based on simultaneous scanning of multiple fibers in a distributed sensing network, achieving a spatial resolution of 2.5 × 4 mm2 in situ. We also demonstrate an increase of ablating potential when injecting an agarose gel in the tissue. Experimental results show that the heat-sink effect contributes to a reduction of the ablated region around 30–60% on average; however, the use of agarose significantly mitigates this effect, enlarging the ablated area by a significant amount, and ablating an even larger surface (+15%) in the absence of blood vessels.
Published: 8 December 2022
by MDPI
Journal: Biosensors
Biosensors, Volume 12; https://doi.org/10.3390/bios12121149

Abstract:
Herein, we report a new conjugate BChl–S–S–NI based on the second-generation photosensitizer bacteriochlorin e6 (BChl) and a 4-styrylnaphthalimide fluorophore (NI), which is cleaved into individual functional fragments in the intracellular medium. The chromophores in the conjugate were cross-linked by click chemistry via a bis(azidoethyl)disulfide bridge which is reductively cleaved by the intracellular enzyme glutathione (GSH). A photophysical investigation of the conjugate in solution by using optical spectroscopy revealed that the energy transfer process is realized with high efficiency in the conjugated system, leading to the quenching of the emission of the fluorophore fragment. It was shown that the conjugate is cleaved by GSH in solution, which eliminates the possibility of energy transfer and restores the fluorescence of 4-styrylnaphthalimide. The photoinduced activity of the conjugate and its imaging properties were investigated on the mouse soft tissue sarcoma cell line S37. Phototoxicity studies in vitro show that the BChl–S–S–NI conjugate has insignificant dark cytotoxicity in the concentration range from 15 to 20,000 nM. At the same time, upon photoexcitation, it exhibits high photoinduced activity.
Published: 8 December 2022
by MDPI
Journal: Biosensors
Biosensors, Volume 12; https://doi.org/10.3390/bios12121148

Abstract:
Au nanoparticles were decorated on the surface of Co-doped ZnO with a certain ratio of Co2+/Co3+ to obtain a novel semiconductor-metal composite. The optimal substrate, designated as Co400-ZnO/Au, is beneficial to the promotion of separation efficiency of electron and hole in a semiconductor excited under visible laser exposure, which the enhances localized surface plasmon resonance (LSPR) of the Au nanoparticles. As an interesting finding, during Co doping, quantum dots of ZnO are generated, which strengthen the strong semiconductor metal interaction (SSSMI) effect. Eventually, the synergistic effect effectively advances the surface enhancement Raman scattering (SERS) performance of Co400-ZnO/Au composite. The enhancement mechanism is addressed in-depth by morphologic characterization, UV-visible, X-ray diffraction, photoluminescence, X-ray photoelectron spectroscopy, density functional theory, and finite difference time domain (FDTD) simulations. By using Co400-ZnO/Au, SERS detection of Rhodamine 6G presents a limit of detection (LOD) of 1 × 10−9 M. As a real application, the Co400-ZnO/Au-based SERS method is utilized to inspect tyramine in beer and the detectable concentration of 1 × 10−8 M is achieved. In this work, the doping strategy is expected to realize a quantum effect, triggering a SSSMI effect for developing promising SERS substrates in future.
Published: 8 December 2022
by MDPI
Journal: Biosensors
Biosensors, Volume 12; https://doi.org/10.3390/bios12121147

Abstract:
Objective: The main objective of this investigation is to provide data about the accuracy of total hemoglobin concentration measurements with respect to clinical settings, and to devices within the categories of point-of-care and reference systems. In particular, tolerance of hemoglobin concentrations below 9 g/dL that have become common in clinical practice today determines the need to demonstrate the limits of measurement accuracy in patient care. Methods: Samples extracted from six units of heparinized human blood with total hemoglobin concentrations ranging from 3 to 18 g/dL were assigned to the test devices in a random order. The pool of test devices comprised blood gas analyzers, an automatic hematology analyzer, a laboratory reference method, and the point-of-care system HemoCue. To reduce the pre-analytic error, each sample was measured three times. Due to the characteristics of the tested devices and methods, we selected the mean values of the data from all these devices, measured at the corresponding total hemoglobin concentrations, as the reference. Main results: The measurement results of the test devices overlap within strict limits (R2 = 0.999). Only the detailed analysis provides information about minor but systematic deviations. In the group of clinically relevant devices, which are involved in patient blood management decisions, the relative differences were within the limit of +/− 5 % for values down to 3 g/dL. Conclusions: A clinically relevant change of +/− 0.5 g/dL of total hemoglobin concentration can be detected with all selected devices and methods. Compliance with more stringent definitions—these are the relative differences of 5 % in relation to the corresponding reference values and the clinically adapted thresholds in the format of a tolerance level analysis—was achieved by the clinical devices assessed here.
Published: 8 December 2022
by MDPI
Journal: Biosensors
Biosensors, Volume 12; https://doi.org/10.3390/bios12121146

Abstract:
Porcine epidemic diarrhea virus (PEDV), a coronavirus that causes highly infectious intestinal diarrhea in piglets, has led to severe economic losses worldwide. Rapid diagnosis and timely supervision are significant in the prophylaxis of PEDV. Herein, we proposed a gold-nanorod (GNR) probe-assisted counting method using dark field microscopy (DFM). The antibody-functionalized silicon chips were prepared to capture PEDV to form sandwich structures with GNR probes for imaging under DFM. Results show that our DFM-based assay for PEDV has a sensitivity of 23.80 copies/μL for simulated real samples, which is very close to that of qPCR in this study. This method of GNR probes combined with DFM for quantitative detection of PEDV not only has strong specificity, good repeatability, and a low detection limit, but it also can be implemented for rapid on-site detection of the pathogens.
Published: 7 December 2022
by MDPI
Journal: Biosensors
Biosensors, Volume 12; https://doi.org/10.3390/bios12121137

Abstract:
In this study, a lateral flow immunoassay (LFIA) was developed to detect okadaic acid (OA) belonging to the diarrheic shellfish poisoning group of aquatic toxins. Newly obtained anti-OA monoclonal antibodies and bimetallic [email protected] [email protected] nanoparticles were used in the indirect format of the LFIA. Peroxidase-mimicking nanozyme properties of [email protected] enabled using them to enhance band coloration on the test strips and, consequently, for increasing the LFIA sensitivity. The instrumental limit of detection (LOD), the working range of detectable concentrations, and the visual cutoff of the assay were 0.5, 0.8–6.8, and 10 ng/mL, respectively. The assay duration was 20 min. The rapid and simple sample preparation procedure was applied for seawater, river water, and fish samples. The total duration of the sample pretreatment and LFIA was 25/40 min for water/fish samples, ensuring testing rapidity. The developed test system provides sensitive control of raw materials and food products and can be used to detect OA at all stages of the food industry «from sea to fork» chains.
Published: 7 December 2022
by MDPI
Journal: Biosensors
Biosensors, Volume 12; https://doi.org/10.3390/bios12121145

Abstract:
The demand for glucose uptake and the accompanying enhanced glycolytic energy metabolism is one of the most important features of cancer cells. Unlike the aerobic metabolic pathway in normal cells, the large amount of pyruvate produced by the dramatic increase of glycolysis in cancer cells needs to be converted to lactate in the cytoplasm, which cannot be done without a large amount of lactate dehydrogenase (LDH). This explains why elevated serum LDH concentrations are usually seen in cancer patient populations. LDH not only correlates with clinical prognostic survival indicators, but also guides subsequent drug therapy. Besides their role in cancers, LDH is also a biomarker for malaria and other diseases. Therefore, it is urgent to develop methods for sensitive and convenient LDH detection. Here, this review systematically summarizes the clinical impact of lactate dehydrogenase detection and principles for LDH detection. The advantages as well as limitations of different detection methods and the future trends for LDH detection were also discussed.
Published: 7 December 2022
by MDPI
Journal: Biosensors
Biosensors, Volume 12; https://doi.org/10.3390/bios12121144

Abstract:
Anisotropic gold nanostructures have fascinated with their exceptional electronic properties, henceforth exploited for the fabrication of electrochemical sensors. However, their synthesis approaches are tedious and often require a growth template. Modern lifestyle has caused an upsurge in the risk of heart attack and requires urgent medical attention. Cardiac troponin I can serve as a biomarker in identification of suspected myocardial infection (heart attack). Hence the present work demonstrates the fabrication of a sensing platform developed by assimilating anisotropic gold nanoclusters (AuNCs) with anti cTnI antibody (acTnI) for the detection of cardiac troponin I (cTnI). The uniqueness and ease of synthesis by a template-free approach provides an extra edge for the fabrication of AuNC coated electrodes. The template-free growth of anisotropic AuNCs onto the indium tin oxide (ITO) glass substrates offers high sensitivity (2.2 × 10−4 A ng−1 mL cm−2) to the developed sensor. The immunosensor was validated by spiking different concentrations of cTnI in artificial serum with negligible interference under optimized conditions. The sensor shows a wide range of detection from 0.06–100 ng/mL with an ultralow detection limit. Thus, it suggests that the template-free immunosensor can potentially be used to screen the traces of cTnI present in blood serum samples, and the AuNCs based platform holds great promise as a transduction matrix, hence it can be exploited for broader sensing applications.
Published: 7 December 2022
by MDPI
Journal: Biosensors
Biosensors, Volume 12; https://doi.org/10.3390/bios12121143

Abstract:
Biofouling on surfaces, caused by the assimilation of proteins, peptides, lipids and microorganisms, leads to contamination, deterioration and failure of biomedical devices and causes implants rejection. To address these issues, various antifouling strategies have been extensively studied, including polyethylene glycol-based polymer brushes. Conducting polymers-based biointerfaces have emerged as advanced surfaces for interfacing biological tissues and organs with electronics. Antifouling of such biointerfaces is a challenge. In this study, we fabricated electrospun fibre mats from sulphonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (sSEBS), infused with conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) (sSEBS-PEDOT), to produce a conductive (2.06 ± 0.1 S/cm), highly porous, fibre mat that can be used as a biointerface in bioelectronic applications. To afford antifouling, here the poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes were grafted onto the sSEBS-PEDOT conducting fibre mats via surface-initiated atom transfer radical polymerization technique (SI-ATRP). For that, a copolymer of EDOT and an EDOT derivative with SI-ATRP initiating sites, 3,4-ethylenedioxythiophene) methyl 2-bromopropanoate (EDOTBr), was firstly electropolymerized on the sSEBS-PEDOT fibre mat to provide sSEBS-PEDOT/P(EDOT-co-EDOTBr). The POEGMA brushes were grafted from the sSEBS-PEDOT/P(EDOT-co-EDOTBr) and the polymerization kinetics confirmed the successful growth of the brushes. Fibre mats with 10-mers and 30-mers POEGMA brushes were studied for antifouling using a BCA protein assay. The mats with 30-mers grafted brushes exhibited excellent antifouling efficiency, ~82% of proteins repelled, compared to the pristine sSEBS-PEDOT fibre mat. The grafted fibre mats exhibited cell viability >80%, comparable to the standard cell culture plate controls. Such conducting, porous biointerfaces with POEGMA grafted brushes are suitable for applications in various biomedical devices, including biosensors, liquid biopsy, wound healing substrates and drug delivery systems.
Back to Top Top