International Journal of Molecular Sciences

Journal Information
EISSN: 14220067
Published by: MDPI
Total articles ≅ 57,576

Latest articles in this journal

Published: 25 September 2022
by MDPI
International Journal of Molecular Sciences, Volume 23; https://doi.org/10.3390/ijms231911314

Abstract:
This study was designed to connect aortic stiffness to vascular contraction in young male and female Wistar rats. We hypothesized that female animals display reduced intrinsic media-layer stiffness, which associates with improved vascular function. Atomic force microscopy (AFM)-based nanoindentation analysis was used to derive stiffness (Young’s modulus) in biaxially (i.e., longitudinal and circumferential) unloaded aortic rings. Reactivity studies compatible with uniaxial loading (i.e., circumferential) were used to assess vascular responses to a selective α1 adrenergic receptor agonist in the presence or absence of extracellular calcium. Elastin and collagen levels were indirectly evaluated with fluorescence microscopy and a picrosirius red staining kit, respectively. We report that male and female Wistar rats display similar AFM-derived aortic media-layer stiffness, even though female animals withstand higher aortic intima-media thickness-to-diameter ratio than males. Female animals also present reduced phenylephrine-induced aortic force development in concentration-response and time-force curves. Specifically, we observed impaired force displacement in both parts of the contraction curve (Aphasic and Atonic) in experiments conducted with and without extracellular calcium. Additionally, collagen levels were lower in female animals without significant elastin content and fragmentation changes. In summary, sex-related functional differences in isolated aortas appear to be related to dissimilarities in the dynamics of vascular reactivity and extracellular matrix composition rather than a direct response to a shift in intrinsic media-layer stiffness.
Published: 25 September 2022
by MDPI
International Journal of Molecular Sciences, Volume 23; https://doi.org/10.3390/ijms231911313

Abstract:
To study the thermal decomposition behavior of 4,4′-azobis(1,2,4-triazole) (ATRZ), the non-isothermal thermal decomposition kinetics of ATRZ were studied using the thermogravimetric–differential scanning calorimetry (TG–DSC) method. The TG–DSC of ATRZ was analyzed at heating rates of 5, 10, 15, and 20 K·min−1 in an argon atmosphere. The thermal decomposition kinetic parameters at peak temperature (Tp), such as apparent activation energy (Ea) and pre-exponential factor (lgA) of ATRZ, were calculated using the Kissinger, Ozawa, and Satava–Sestak methods. Ea and lgA calculated using the Kissinger, Ozawa, and Satava–Sestak methods are very close, at 780.2 kJ·mol−1/70.5 s−1, 751.1 kJ·mol−1/71.8 s−1, and 762.1 kJ·mol−1/71.8 s−1, respectively. Using a combination of three methods, the reaction mechanism function g(α) of ATRZ was obtained. The results show that the decomposition temperature of ATRZ is about 310 °C, and the decomposition is rapidly exothermic. The pyrolysis path of ATRZ was investigated through a pyrolysis-gas chromatography mass spectrometry (PY-GC/MS) experiment. ATRZ has three different decomposition paths and finally generates N2, HC-N-CH, N≡C-N, and HC=N-C≡N. The laser ignition combustion duration of ATRZ was 0.5033 s and the peak temperature was 1913 °C. The laser ignition combustion duration of ATRZ+CL-20 was 1.0277 s and the peak temperature was 2105 °C. The rapid energy release rate of ATRZ promotes the combustion energy release of CL-20.
Published: 25 September 2022
by MDPI
International Journal of Molecular Sciences, Volume 23; https://doi.org/10.3390/ijms231911310

Abstract:
The aim of this work was to design innovative nanostructured lipid carriers (NLCs) for the delivery of dexibuprofen (DXI) as an antiproliferative therapy against tumoral processes, and overcome its side effects. DXI-NLC samples were prepared with beeswax, Miglyol 812 and Tween 80 using high-pressure homogenization. A two-level factorial design 24 was applied to optimize the formulation, and physicochemical properties such as particle size, zeta potential, polydispersity index and entrapment efficiency were measured. Optimized parameters of DXI-NLCs exhibited a mean particle size of 152.3 nm, a polydispersity index below 0.2, and high DXI entrapment efficiency (higher than 99%). Moreover, DXI-NLCs provided a prolonged drug release, slower than the free DXI. DXI-NLCs were stable for 2 months and their morphology revealed that they possess a spherical shape. In vitro cytotoxicity and anticancer potential studies were performed towards prostate (PC-3) and breast (MDA-MB-468) cancer cell lines. The highest activity of DXI-NLCs was observed towards breast cancer cells, which were effectively inhibited at 3.4 μM. Therefore, DXI-NLCs constitute a promising antiproliferative therapy that has proven to be especially effective against breast cancer.
Published: 25 September 2022
by MDPI
International Journal of Molecular Sciences, Volume 23; https://doi.org/10.3390/ijms231911312

Abstract:
Extracellular vesicles (EVs) are nanosized lipid bilayer vesicles that are released by almost all cell types. They range in diameter from 30 nm to several micrometres and have the ability to carry biologically active molecules such as proteins, lipids, RNA, and DNA. EVs are natural vectors and play an important role in many physiological and pathological processes. The amount and composition of EVs in human biological fluids serve as biomarkers and are used for diagnosing diseases and monitoring the effectiveness of treatment. EVs are promising for use as therapeutic agents and as natural vectors for drug delivery. However, the successful use of EVs in clinical practice requires an understanding of their biodistribution in an organism. Numerous studies conducted so far on the biodistribution of EVs show that, after intravenous administration, EVs are mostly localized in organs rich in blood vessels and organs associated with the reticuloendothelial system, such as the liver, lungs, spleen, and kidneys. In order to improve resolution, new dyes and labels are being developed and detection methods are being optimized. In this work, we review all available modern methods and approaches used to assess the biodistribution of EVs, as well as discuss their advantages and limitations.
Published: 25 September 2022
by MDPI
International Journal of Molecular Sciences, Volume 23; https://doi.org/10.3390/ijms231911311

Abstract:
Alzheimer’s disease (AD) has pathological hallmarks including amyloid beta (Aβ) plaque formation. Currently approved single-target drugs cannot effectively ameliorate AD. Medicinal herbs and their derived ingredients (MHDIs) have multitarget and multichannel properties, engendering exceptional AD treatment outcomes. This review delineates how in in vivo models MHDIs suppress Aβ deposition by downregulating β- and γ-secretase activities; inhibit oxidative stress by enhancing the antioxidant activities and reducing lipid peroxidation; prevent tau hyperphosphorylation by upregulating protein phosphatase 2A expression and downregulating glycogen synthase kinase-3β expression; reduce inflammatory mediators partly by upregulating brain-derived neurotrophic factor/extracellular signal-regulated protein kinase 1/2-mediated signaling and downregulating p38 mitogen-activated protein kinase (p38 MAPK)/c-Jun N-terminal kinase (JNK)-mediated signaling; attenuate synaptic dysfunction by increasing presynaptic protein, postsynaptic protein, and acetylcholine levels and preventing acetylcholinesterase activity; and protect against neuronal apoptosis mainly by upregulating Akt/cyclic AMP response element-binding protein/B-cell lymphoma 2 (Bcl-2)-mediated anti-apoptotic signaling and downregulating p38 MAPK/JNK/Bcl-2-associated x protein (Bax)/caspase-3-, Bax/apoptosis-inducing factor-, C/EBP homologous protein/glucose-regulated protein 78-, and autophagy-mediated apoptotic signaling. Therefore, MHDIs listed in this review protect against Aβ-induced cognitive decline by inhibiting Aβ accumulation, oxidative stress, tau hyperphosphorylation, inflammation, synaptic damage, and neuronal apoptosis in the cortex and hippocampus during the early and late AD phases.
Published: 25 September 2022
by MDPI
International Journal of Molecular Sciences, Volume 23; https://doi.org/10.3390/ijms231911309

Abstract:
Auxenochlorella pyrenoidosa is an efficient photosynthetic microalga with autotrophic growth and reproduction, which has the advantages of rich nutrition and high protein content. Target of rapamycin (TOR) is a conserved protein kinase in eukaryotes both structurally and functionally, but little is known about the TOR signalling in Auxenochlorella pyrenoidosa. Here, we found a conserved ApTOR protein in Auxenochlorella pyrenoidosa, and the key components of TOR complex 1 (TORC1) were present, while the components RICTOR and SIN1 of the TORC2 were absent in Auxenochlorella pyrenoidosa. Drug sensitivity experiments showed that AZD8055 could effectively inhibit the growth of Auxenochlorella pyrenoidosa, whereas rapamycin, Torin1 and KU0063794 had no obvious effect on the growth of Auxenochlorella pyrenoidosa a. Transcriptome data results indicated that Auxenochlorella pyrenoidosa TOR (ApTOR) regulates various intracellular metabolism and signaling pathways in Auxenochlorella pyrenoidosa. Most genes related to chloroplast development and photosynthesis were significantly down-regulated under ApTOR inhibition by AZD8055. In addition, ApTOR was involved in regulating protein synthesis and catabolism by multiple metabolic pathways in Auxenochlorella pyrenoidosa. Importantly, the inhibition of ApTOR by AZD8055 disrupted the normal carbon and nitrogen metabolism, protein and fatty acid metabolism, and TCA cycle of Auxenochlorella pyrenoidosa cells, thus inhibiting the growth of Auxenochlorella pyrenoidosa. These RNA-seq results indicated that ApTOR plays important roles in photosynthesis, intracellular metabolism and cell growth, and provided some insights into the function of ApTOR in Auxenochlorella pyrenoidosa.
Published: 25 September 2022
by MDPI
International Journal of Molecular Sciences, Volume 23; https://doi.org/10.3390/ijms231911308

Abstract:
During viral infection, both host and viral proteins undergo post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation, which play critical roles in viral replication, pathogenesis, and host antiviral responses. Protein acetylation is one of the most important PTMs and is catalyzed by a series of acetyltransferases that divert acetyl groups from acetylated molecules to specific amino acid residues of substrates, affecting chromatin structure, transcription, and signal transduction, thereby participating in the cell cycle as well as in metabolic and other cellular processes. Acetylation of host and viral proteins has emerging roles in the processes of virus adsorption, invasion, synthesis, assembly, and release as well as in host antiviral responses. Methods to study protein acetylation have been gradually optimized in recent decades, providing new opportunities to investigate acetylation during viral infection. This review summarizes the classification of protein acetylation and the standard methods used to map this modification, with an emphasis on viral and host protein acetylation during viral infection.
Published: 25 September 2022
by MDPI
International Journal of Molecular Sciences, Volume 23; https://doi.org/10.3390/ijms231911288

Abstract:
Glutathione S-transferases (GSTs) play an essential role in plant cell detoxification and secondary metabolism. However, their accurate functions in the growth and response to abiotic stress in woody plants are still largely unknown. In this work, a Phi class Glutathione S-transferase encoding gene PtGSTF1 was isolated from poplar (P. trichocarpa), and its biological functions in the regulation of biomass production and salt tolerance were investigated in transgenic poplar. PtGSTF1 was ubiquitously expressed in various tissues and organs, with a predominant expression in leaves and inducible expression by salt stress. Transgenic poplar overexpressing PtGSTF1 showed improved shoot growth, wood formation and improved salt tolerance, consistent with the increased xylem cell number and size under normal condition, and the optimized Na+ and K+ homeostasis and strengthened reactive oxygen species scavenging during salt stress. Further transcriptome analyses demonstrated that the expressions of genes related to hydrolase, cell wall modification, ion homeostasis and ROS scavenging were up- or down-regulated in transgenic plants. Our findings imply that PtGSTF1 improves both biomass production and salt tolerance through regulating hydrolase activity, cell wall modification, ion homeostasis and ROS scavenging in transgenic poplar, and that it can be considered as a useful gene candidate for the genetic breeding of new tree varieties with improved growth under salt stress conditions.
Published: 25 September 2022
by MDPI
International Journal of Molecular Sciences, Volume 23; https://doi.org/10.3390/ijms231911307

Abstract:
Coronavirus disease 2019 (COVID-19) can lead to clinically significant multisystem disorders that also affect the kidney. According to recent data, renal injury in the form of thrombotic microangiopathy (TMA) in native kidneys ranks third in frequency. Our review of global literature revealed 46 cases of TMA in association with COVID-19. Among identified cases, 18 patients presented as thrombotic thrombocytopenic purpura (TTP) and 28 cases presented as atypical hemolytic uremic syndrome (aHUS). Altogether, seven patients with aHUS had previously proven pathogenic or likely pathogenic genetic complement abnormalities. TMA occurred at the time of viremia or even after viral clearance. Infection with COVID-19 resulted in almost no or only mild respiratory symptoms in the majority of patients, while digestive symptoms occurred in almost one-third of patients. Regarding the clinical presentation of COVID-19-associated TMA, the cases showed no major deviations from the known presentation. Patients with TTP were treated with plasma exchange (88.9%) or fresh frozen plasma (11.1%), corticosteroids (88.9%), rituximab (38.9%), and caplacizumab (11.1%). Furthermore, 53.6% of patients with aHUS underwent plasma exchange with or without steroid as initial therapy, and 57.1% of patients received a C5 complement inhibitor. Mortality in the studied cohort was 16.7% for patients with TTP and 10.7% for patients with aHUS. The exact role of COVID-19 in the setting of COVID-19-associated TMA remains unclear. COVID-19 likely represents a second hit of aHUS or TTP that manifests in genetically predisposed individuals. Early identification of the TMA subtype and appropriate prompt and specific treatment could lead to good outcomes comparable to survival and recovery statistics for TMA of all causes.
Published: 25 September 2022
by MDPI
International Journal of Molecular Sciences, Volume 23; https://doi.org/10.3390/ijms231911306

Abstract:
Glutamate dehydrogenase (GDH) plays a key role in the metabolism of glutamate, an important compound at a cross-road of carbon and nitrogen metabolism and a relevant neurotransmitter. Despite being one of the first discovered allosteric enzymes, GDH still poses challenges for structural characterization of its allosteric sites. Only the structures with ADP, and at low (3.5 Å) resolution, are available for mammalian GDH complexes with allosteric activators. Here, we aim at deciphering a structural basis for the GDH allosteric activation using bovine GDH as a model. For the first time, we report a mammalian GDH structure in a ternary complex with the activators leucine and ADP, co-crystallized with potassium ion, resolved to 2.45 Å. An improved 2.4-angstrom resolution of the GDH complex with ADP is also presented. The ternary complex with leucine and ADP differs from the binary complex with ADP by the conformation of GDH C-terminus, involved in the leucine binding and subunit interactions. The potassium site, identified in this work, may mediate interactions between the leucine and ADP binding sites. Our data provide novel insights into the mechanisms of GDH activation by leucine and ADP, linked to the enzyme regulation by (de)acetylation.
Back to Top Top