Nature Communications

Journal Information
EISSN: 20411723
Total articles ≅ 52,460

Latest articles in this journal

Yanzhang Li, Hongyu Wang, , Huan Ye, Yanan Zhang, Rongzhang Yin, Haoning Jia, Bingxu Hou, Changqiu Wang, Hongrui Ding, et al.
Nature Communications, Volume 14, pp 1-10;

Electron transfer is the most elementary process in nature, but the existing electron transfer rules are seldom applied to high-pressure situations, such as in the deep Earth. Here we show a deep learning model to obtain the electronegativity of 96 elements under arbitrary pressure, and a regressed unified formula to quantify its relationship with pressure and electronic configuration. The relative work function of minerals is further predicted by electronegativity, presenting a decreasing trend with pressure because of pressure-induced electron delocalization. Using the work function as the case study of electronegativity, it reveals that the driving force behind directional electron transfer results from the enlarged work function difference between compounds with pressure. This well explains the deep high-conductivity anomalies, and helps discover the redox reactivity between widespread Fe(II)-bearing minerals and water during ongoing subduction. Our results give an insight into the fundamental physicochemical properties of elements and their compounds under pressure.
Jeff Yat-Fai Chung, , Max Kam-Kwan Chan, , Xiao-Ru Huang, Calvin Sze-Hang Ng, Dongmei Zhang, , , , et al.
Nature Communications, Volume 14, pp 1-17;

Neutrophils are dynamic with their phenotype and function shaped by the microenvironment, such as the N1 antitumor and N2 pro-tumor states within the tumor microenvironment (TME), but its regulation remains undefined. Here we examine TGF-β1/Smad3 signaling in tumor-associated neutrophils (TANs) in non-small cell lung carcinoma (NSCLC) patients. Smad3 activation in N2 TANs is negatively correlate with the N1 population and patient survival. In experimental lung carcinoma, TANs switch from a predominant N2 state in wild-type mice to an N1 state in Smad3-KO mice which associate with enhanced neutrophil infiltration and tumor regression. Neutrophil depletion abrogates the N1 anticancer phenotype in Smad3-KO mice, while adoptive transfer of Smad3-KO neutrophils reproduces this protective effect in wild-type mice. Single-cell analysis uncovers a TAN subset showing a mature N1 phenotype in Smad3-KO TME, whereas wild-type TANs mainly retain an immature N2 state due to Smad3. Mechanistically, TME-induced Smad3 target genes related to cell fate determination to preserve the N2 state of TAN. Importantly, genetic deletion and pharmaceutical inhibition of Smad3 enhance the anticancer capacity of neutrophils against NSCLC via promoting their N1 maturation. Thus, our work suggests that Smad3 signaling in neutrophils may represent a therapeutic target for cancer immunotherapy.
Jekwan Lee, Jaehyeon Kwon, Eunho Lee, Jiwon Park, Soonyoung Cha, , Takashi Taniguchi, ,
Nature Communications, Volume 14, pp 1-6;

Higher-order topological insulators are recently discovered quantum materials exhibiting distinct topological phases with the generalized bulk-boundary correspondence. Td-WTe2 is a promising candidate to reveal topological hinge excitation in an atomically thin regime. However, with initial theories and experiments focusing on localized one-dimensional conductance only, no experimental reports exist on how the spin orientations are distributed over the helical hinges—this is critical, yet one missing puzzle. Here, we employ the magneto-optic Kerr effect to visualize the spinful characteristics of the hinge states in a few-layer Td-WTe2. By examining the spin polarization of electrons injected from WTe2 to graphene under external electric and magnetic fields, we conclude that WTe2 hosts a spinful and helical topological hinge state protected by the time-reversal symmetry. Our experiment provides a fertile diagnosis to investigate the topologically protected gapless hinge states, and may call for new theoretical studies to extend the previous spinless model.
Mingdu Luo, Yandong Yin, Zhiwei Zhou, Haosong Zhang, Xi Chen, Hongmiao Wang,
Nature Communications, Volume 14, pp 1-15;

Ion mobility (IM) adds a new dimension to liquid chromatography-mass spectrometry-based untargeted metabolomics which significantly enhances coverage, sensitivity, and resolving power for analyzing the metabolome, particularly metabolite isomers. However, the high dimensionality of IM-resolved metabolomics data presents a great challenge to data processing, restricting its widespread applications. Here, we develop a mass spectrum-oriented bottom-up assembly algorithm for IM-resolved metabolomics that utilizes mass spectra to assemble four-dimensional peaks in a reverse order of multidimensional separation. We further develop the end-to-end computational framework Met4DX for peak detection, quantification and identification of metabolites in IM-resolved metabolomics. Benchmarking and validation of Met4DX demonstrates superior performance compared to existing tools with regard to coverage, sensitivity, peak fidelity and quantification precision. Importantly, Met4DX successfully detects and differentiates co-eluted metabolite isomers with small differences in the chromatographic and IM dimensions. Together, Met4DX advances metabolite discovery in biological organisms by deciphering the complex 4D metabolomics data.
Emanuela Colucci, Zaid R. Anshari, Miyer F. Patiño-Ruiz, Mariia Nemchinova, Jacob Whittaker, ,
Nature Communications, Volume 14, pp 1-10;

Episodic ataxias (EAs) are rare neurological conditions affecting the nervous system and typically leading to motor impairment. EA6 is linked to the mutation of a highly conserved proline into an arginine in the glutamate transporter EAAT1. In vitro studies showed that this mutation leads to a reduction in the substrates transport and an increase in the anion conductance. It was hypothesised that the structural basis of these opposed functional effects might be the straightening of transmembrane helix 5, which is kinked in the wild-type protein. In this study, we present the functional and structural implications of the mutation P208R in the archaeal homologue of glutamate transporters GltTk. We show that also in GltTk the P208R mutation leads to reduced aspartate transport activity and increased anion conductance, however a cryo-EM structure reveals that the kink is preserved. The arginine side chain of the mutant points towards the lipidic environment, where it may engage in interactions with the phospholipids, thereby potentially interfering with the transport cycle and contributing to stabilisation of an anion conducting state.
Sri Gowtham Thakku, Jackson Lirette, Kanagavel Murugesan, Julie Chen, , Niaz Banaei, , James Gomez, Sharon Y. Wong,
Nature Communications, Volume 14, pp 1-13;

Detection of microbial cell-free DNA (cfDNA) circulating in the bloodstream has emerged as a promising new approach for diagnosing infection. Microbial diagnostics based on cfDNA require assays that can detect rare and highly fragmented pathogen nucleic acids. We now report WATSON (Whole-genome Assay using Tiled Surveillance Of Nucleic acids), a method to detect low amounts of pathogen cfDNA that couples pooled amplification of genomic targets tiled across the genome with pooled CRISPR/Cas13-based detection of these targets. We demonstrate that this strategy of tiling improves cfDNA detection compared to amplification and detection of a single targeted locus. WATSON can detect cfDNA from Mycobacterium tuberculosis in plasma of patients with active pulmonary tuberculosis, a disease that urgently needs accurate, minimally-invasive, field-deployable diagnostics. We thus demonstrate the potential for translating WATSON to a lateral flow platform. WATSON demonstrates the ability to capitalize on the strengths of targeting microbial cfDNA to address the need for point-of-care diagnostic tests for infectious diseases.
Chenghao Lao, Xing Jin, Lin Chang, Heming Wang, Zhe Lv, Weiqiang Xie, Haowen Shu, , ,
Nature Communications, Volume 14, pp 1-8;

Quantum fluctuations disrupt the cyclic motions of dissipative Kerr solitons (DKSs) in nonlinear optical microresonators and consequently cause timing jitter of the emitted pulse trains. This problem is translated to the performance of several applications that employ DKSs as compact frequency comb sources. Recently, device manufacturing and noise reduction technologies have advanced to unveil the quantum properties of DKSs. Here we investigate the quantum decoherence of DKSs existing in normal-dispersion microresonators known as dark pulses. By virtue of the very large material nonlinearity, we directly observe the quantum decoherence of dark pulses in an AlGaAs-on-insulator microresonator, and the underlying dynamical processes are resolved by injecting stochastic photons into the microresonators. Moreover, phase correlation measurements show that the uniformity of comb spacing of quantum-limited dark pulses is better than 1.2 × 10−16 and 2.5 × 10−13 when normalized to the optical carrier frequencies and repetition frequencies, respectively. Comparing DKSs generated in different material platforms explicitly confirms the advantages of dark pulses over bright solitons in terms of quantum-limited coherence. Our work establishes a critical performance assessment of DKSs, providing guidelines for coherence engineering of chip-scale optical frequency combs.
Nature Communications, Volume 14, pp 1-11;

Many plants produce fleshy fruits, attracting fruit-eating animals that disperse the seeds in their droppings. Such seed dispersal results in a conflict between the plant and the animal, as digestion of seeds can be highly beneficial to the animal but reduces plant fitness. The plant Ochradenus baccatus uses the myrosinase-glucosinolates system to protect its seeds. We show that hydrolysis of the O. baccatus fruit glucosinolates by the myrosinase enzyme inhibited digestive enzymes and hampered digestion in naïve individuals of the bird Pycnonotus xanthopygos. However, digestion in birds regularly feeding on O. baccatus fruits was unaffected. We find that Pantoea bacteria, dominating the gut of these experienced birds as well as the fruits, thrive on glucosinolates hydrolysis products in culture. Augmentation of Pantoea protects both naïve birds and plant seedlings from the effects of glucosinolates hydrolysis products. Our findings demonstrate a tripartite interaction, where the plant-bird mutually beneficial interactions are mediated by a communal bacterial tenant.
Jian Ma, Yingke Zhou, Penglin Pan, , Zixi Wang, Lei Lily Li, Bing Wang, Yuqian Yan, Yunqian Pan, Qi Ye, et al.
Nature Communications, Volume 14, pp 1-12;

53BP1 promotes nonhomologous end joining (NHEJ) over homologous recombination (HR) repair by mediating inactivation of DNA end resection. Ubiquitination plays an important role in regulating dissociation of 53BP1 from DNA double-strand breaks (DSBs). However, how this process is regulated remains poorly understood. Here, we demonstrate that TRABID deubiquitinase binds to 53BP1 at endogenous level and regulates 53BP1 retention at DSB sites. TRABID deubiquitinates K29-linked polyubiquitination of 53BP1 mediated by E3 ubiquitin ligase SPOP and prevents 53BP1 dissociation from DSBs, consequently inducing HR defects and chromosomal instability. Prostate cancer cells with TRABID overexpression exhibit a high sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors. Our work shows that TRABID facilitates NHEJ repair over HR during DNA repair by inducing prolonged 53BP1 retention at DSB sites, suggesting that TRABID overexpression may predict HR deficiency and the potential therapeutic use of PARP inhibitors in prostate cancer.
Xin-Hua Wu, Yang-Yang He, Zhang-Rong Chen, Ze-Yuan He, , Yangzhige He, Guang-Ming Wang, Yu Dong, Ying Yang, Yi-Min Sun, et al.
Nature Communications, Volume 14, pp 1-14;

Immune and inflammatory responses have an important function in the pathophysiology of pulmonary hypertension (PH). However, little is known about the immune landscape in peripheral circulation in patients with high-altitude pulmonary hypertension (HAPH). We apply single-cell transcriptomics to characterize the monocytes that are significantly enriched in the peripheral blood mononuclear cells (PBMC) of HAPH patients. We discover an increase in C1 (non-classical) and C2 (intermediate) monocytes in PBMCs and a decrease in hypoxia-inducible transcription factor-1α (HIF-1α) in all monocyte subsets associated with HAPH. In addition, we demonstrate that similar immune adaptations may exist in HAPH and PH. Overall, we characterize an immune cell atlas of the peripheral blood in HAPH patients. Our data provide evidence that specific monocyte subsets and HIF-1α downregulation might be implicated in the pathogenesis of HAPH.
Back to Top Top